Recent Advances in Ferroelectric-Enhanced Low-Dimensional Optoelectronic Devices

被引:23
作者
Iqbal, Muhammad Ahsan [1 ]
Xie, Haowei [1 ]
Qi, Lu [2 ]
Jiang, Wei-Chao [1 ]
Zeng, Yu-Jia [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Technol Univ, Key Lab Adv Opt Precis Mfg Technol, Guangdong Higher Educ Inst, Shenzhen 518118, Peoples R China
基金
中国国家自然科学基金;
关键词
ferroelectric materials; low-dimensional materials; nonvolatile memories; photodetectors; FIELD-EFFECT TRANSISTORS; PHASE-TRANSITION; GRAPHENE; PHOTODETECTOR; POLARIZATION; PERFORMANCE; NANOWIRES; PHYSICS; ORIGIN; GATE;
D O I
10.1002/smll.202205347
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ferroelectric (FE) materials, including BiFeO3, P(VDF-TrFE), and CuInP2S6, are a type of dielectric material with a unique, spontaneous electric polarization that can be reversed by applying an external electric field. The combination of FE and low-dimensional materials produces synergies, sparking significant research interest in solar cells, photodetectors (PDs), nonvolatile memory, and so on. The fundamental aspects of FE materials, including the origin of FE polarization, extrinsic FE materials, and FE polarization quantification are first discussed. Next, the state-of-the-art of FE-based optoelectronic devices is focused. How FE materials affect the energy band of channel materials and how device structures influence PD performance are also summarized. Finally, the future directions of this rapidly growing field are discussed.
引用
收藏
页数:24
相关论文
共 152 条
[1]   BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives [J].
Acosta, M. ;
Novak, N. ;
Rojas, V. ;
Patel, S. ;
Vaish, R. ;
Koruza, J. ;
Rossetti, G. A., Jr. ;
Roedel, J. .
APPLIED PHYSICS REVIEWS, 2017, 4 (04)
[2]   Flexible Piezoelectric MoS2/P(VDF-TrFE) Nanocomposite Film for Vibration Energy Harvesting [J].
Arunguvai, J. ;
Lakshmi, P. .
JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (12) :6870-6880
[3]   Physics and applications of charged domain walls [J].
Bednyakov, Petr S. ;
Sturman, Boris I. ;
Sluka, Tomas ;
Tagantsev, Alexander K. ;
Yudin, Petr V. .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[4]   Formation of charged ferroelectric domain walls with controlled periodicity [J].
Bednyakov, Petr S. ;
Sluka, Tomas ;
Tagantsev, Alexander K. ;
Damjanovic, Dragan ;
Setter, Nava .
SCIENTIFIC REPORTS, 2015, 5
[5]   Origin of Ferroelectricity in a Family of Polar Oxides: The Dion-Jacobson Phases [J].
Benedek, Nicole A. .
INORGANIC CHEMISTRY, 2014, 53 (07) :3769-3777
[6]   Why Are There So Few Perovskite Ferroelectrics? [J].
Benedek, Nicole A. ;
Fennie, Craig J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (26) :13339-13349
[7]  
Biancoli A, 2015, NAT MATER, V14, P224, DOI [10.1038/nmat4139, 10.1038/NMAT4139]
[8]   Direct writing of ferroelectric domains on strontium barium niobate crystals using focused ultraviolet laser light [J].
Boes, Andreas ;
Crasto, Tristan ;
Steigerwald, Hendrik ;
Wade, Scott ;
Frohnhaus, Jakob ;
Soergel, Elisabeth ;
Mitchell, Arnan .
APPLIED PHYSICS LETTERS, 2013, 103 (14)
[9]   Two-dimensional ferroelectric films [J].
Bune, AV ;
Fridkin, VM ;
Ducharme, S ;
Blinov, LM ;
Palto, SP ;
Sorokin, AV ;
Yudin, SG ;
Zlatkin, A .
NATURE, 1998, 391 (6670) :874-877
[10]   Size and scaling effects in barium titanate. An overview [J].
Buscaglia, Vincenzo ;
Randall, Clive A. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (11) :3744-3758