Harnack inequalities for McKean-Vlasov SDEs driven by subordinate Brownian motions

被引:2
作者
Deng, Chang-Song [1 ]
Huang, Xing [2 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
McKean-Vlasov SDE; Levy process; Subordinator; Harnack inequality; HOMOGENEOUS LANDAU EQUATION; FOKKER-PLANCK EQUATIONS; HARD POTENTIALS; EXISTENCE;
D O I
10.1016/j.jmaa.2022.126763
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Existence and uniqueness are established for McKean-Vlasov SDEs driven by Levy processes. By using an approximation technique and coupling by change of measures, Harnack inequalities are investigated for McKean-Vlasov SDEs driven by subordinate Brownian motions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 27 条
[1]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[2]   FROM NONLINEAR FOKKER-PLANCK EQUATIONS TO SOLUTIONS OF DISTRIBUTION DEPENDENT SDE [J].
Barbu, Viorel ;
Roeckner, Michael .
ANNALS OF PROBABILITY, 2020, 48 (04) :1902-1920
[3]   PROBABILISTIC REPRESENTATION FOR SOLUTIONS TO NONLINEAR FOKKER-PLANCK EQUATIONS [J].
Barbu, Viorel ;
Roeckner, Michael .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :4246-4260
[4]  
BARCZY M., 2015, Int. J. Stoch. Anal., P23
[5]  
Bogachev V.I., 2015, Mathematical Surveys and Monographs
[6]   Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials [J].
Carrapatoso, Kleber .
BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (07) :777-805
[7]   Harnack Inequalities for Functional SDEs Driven by Subordinate Brownian Motions [J].
Deng, Chang-Song ;
Huang, Xing .
POTENTIAL ANALYSIS, 2022, 56 (02) :213-226
[8]   On shift Harnack inequalities for subordinate semigroups and moment estimates for Levy processes [J].
Deng, Chang-Song ;
Schilling, Rene L. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (10) :3851-3878
[9]   On the spatially homogeneous landau equation for hard potentials - Part I: Existence, uniqueness and smoothness [J].
Desvillettes, L ;
Villani, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) :179-259
[10]   On the spatially homogeneous Landau equation for hard potentials - Part II: H-theorem and applications [J].
Desvillettes, L ;
Villani, C .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2000, 25 (1-2) :261-298