An unsupervised intelligent fault diagnosis research for rotating machinery based on NND-SAM method

被引:3
|
作者
Zhang, Haifeng [1 ,2 ]
Zou, Fengqian [1 ]
Sang, Shengtian [1 ]
Li, Yuqing [1 ]
Li, Xiaoming [1 ]
Hu, Kongzhi [1 ]
Chen, Yufeng [3 ]
机构
[1] Harbin Inst Technol, MEMS Ctr, Harbin 150001, Peoples R China
[2] Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Peoples R China
[3] Peoples Liberat Army AF Harbin Flight Acad, Harbin, Peoples R China
关键词
fault diagnosis; domain adversarial; rotating machinery; transfer learning; BEARINGS; PROGNOSTICS;
D O I
10.1088/1361-6501/aca98f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Currently, intelligent fault diagnostics of rotating machinery have significantly contributed to mechanical health monitoring. However, real-world labeled data obtained from high-value equipment such as gas turbine units, pumps, and other rotating components are occasionally insufficient for model training. This article proposes an unsupervised deep transfer learning model that can directly extract features from the data itself, thus reducing the number of training samples required. The well-designed neural network with a domain-specific antagonism mechanism aligns features between the source and target domains and so makes data-driven decisions more efficiently. The parameter-free gradient reversal layer is used as an optimizer, considerably reducing the cross-domain discrepancy and accelerating convergence. The average multi-classification accuracy under transferable conditions reaches 97%, 91%, and 95% over three cases of fault diagnosis. Moreover, the time consumption of the system improves by more than 3.5% compared to existing models. The results reveal that the suggested strategy is suitable for a challenging unlabeled dataset and represents a significant improvement over existing unsupervised learning techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] An intelligent fault diagnosis of rotating machinery in class-incremental scenarios
    Han, Yan
    Zhang, Xiaolong
    Su, Zuqiang
    Huang, Qingqing
    Zhang, Yan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [42] An explainable artificial intelligence approach for unsupervised fault detection and diagnosis in rotating machinery
    Brito, Lucas C.
    Susto, Gian Antonio
    Brito, Jorge N.
    Duarte, Marcus A., V
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 163
  • [43] Research on Rotating Machinery Fault Diagnosis System
    Yao, Zheng
    Wang, Zhaohua
    RECENT TRENDS IN MATERIALS AND MECHANICAL ENGINEERING MATERIALS, MECHATRONICS AND AUTOMATION, PTS 1-3, 2011, 55-57 : 1310 - +
  • [44] A Migration Learning Method Based on Adaptive Batch Normalization Improved Rotating Machinery Fault Diagnosis
    Li, Xueyi
    Yu, Tianyu
    Li, Daiyou
    Wang, Xiangkai
    Shi, Cheng
    Xie, Zhijie
    Kong, Xiangwei
    SUSTAINABILITY, 2023, 15 (10)
  • [45] A Rotating Machinery Fault Diagnosis Method Based on Feature Learning of Thermal Images
    Jia, Zhen
    Liu, Zhenbao
    Vong, Chi-Man
    Pecht, Michael
    IEEE ACCESS, 2019, 7 : 12348 - 12359
  • [46] Fault diagnosis method for rotating machinery based on SEDenseNet and Gramian Angular Field
    Bai, Ruoyang
    Wang, Hongwei
    Sun, Wenlei
    Shi, Yuxin
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2024, 26 (04):
  • [47] Feature Extraction Method for Fault Diagnosis of Rotating Machinery Based on Wavelet and LLE
    Zhang, Guangtao
    Cheng, Yuanchu
    Wang, Xingfang
    Lu, Na
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ELECTRONIC, MECHANICAL, INFORMATION AND MANAGEMENT SOCIETY (EMIM), 2016, 40 : 1181 - 1185
  • [48] Fault Diagnosis Method for Rotating Machinery Based on Multi-scale Features
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Yao
    Zhu, Rupeng
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2023, 36 (01)
  • [49] A new intelligent fault identification method based on transfer locality preserving projection for actual diagnosis scenario of rotating machinery
    Zheng, Huailiang
    Wang, Rixin
    Yin, Jiancheng
    Li, Yuqing
    Lu, Haiqing
    Xu, Minqiang
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 135
  • [50] Rotating machinery fault diagnosis method based on the differential local mean decomposition
    Meng, Zong
    Wang, Yachao
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014, 50 (11): : 101 - 107