An unsupervised intelligent fault diagnosis research for rotating machinery based on NND-SAM method

被引:3
|
作者
Zhang, Haifeng [1 ,2 ]
Zou, Fengqian [1 ]
Sang, Shengtian [1 ]
Li, Yuqing [1 ]
Li, Xiaoming [1 ]
Hu, Kongzhi [1 ]
Chen, Yufeng [3 ]
机构
[1] Harbin Inst Technol, MEMS Ctr, Harbin 150001, Peoples R China
[2] Minist Educ, Key Lab Microsyst & Microstruct Mfg, Harbin 150001, Peoples R China
[3] Peoples Liberat Army AF Harbin Flight Acad, Harbin, Peoples R China
关键词
fault diagnosis; domain adversarial; rotating machinery; transfer learning; BEARINGS; PROGNOSTICS;
D O I
10.1088/1361-6501/aca98f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Currently, intelligent fault diagnostics of rotating machinery have significantly contributed to mechanical health monitoring. However, real-world labeled data obtained from high-value equipment such as gas turbine units, pumps, and other rotating components are occasionally insufficient for model training. This article proposes an unsupervised deep transfer learning model that can directly extract features from the data itself, thus reducing the number of training samples required. The well-designed neural network with a domain-specific antagonism mechanism aligns features between the source and target domains and so makes data-driven decisions more efficiently. The parameter-free gradient reversal layer is used as an optimizer, considerably reducing the cross-domain discrepancy and accelerating convergence. The average multi-classification accuracy under transferable conditions reaches 97%, 91%, and 95% over three cases of fault diagnosis. Moreover, the time consumption of the system improves by more than 3.5% compared to existing models. The results reveal that the suggested strategy is suitable for a challenging unlabeled dataset and represents a significant improvement over existing unsupervised learning techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A method for intelligent fault diagnosis of rotating machinery
    Chen, CZ
    Mo, CT
    DIGITAL SIGNAL PROCESSING, 2004, 14 (03) : 203 - 217
  • [2] A rule-based intelligent method for fault diagnosis of rotating machinery
    Dou, Dongyang
    Yang, Jianguo
    Liu, Jiongtian
    Zhao, Yingkai
    KNOWLEDGE-BASED SYSTEMS, 2012, 36 : 1 - 8
  • [3] A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
    Zhao, Xiaoli
    Jia, Minping
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1745 - 1763
  • [4] A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery
    Liu, Zhao-Hua
    Chen, Liang
    Wei, Hua-Liang
    Wu, Fa-Ming
    Chen, Lei
    Chen, Ya-Nan
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 230
  • [5] RESEARCH ON FAULT DIAGNOSIS SYSTEM OF ROTATING MACHINERY BASED ON MACHINERY CONFIGURATION
    Chen Ping
    Xie Zhijiang
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2008, 7 (01) : 41 - 44
  • [6] A Fault Diagnosis Method of Rotating Machinery Based on LBDP
    Shi M.
    Zhao R.
    Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2021, 32 (14): : 1653 - 1658and1668
  • [7] Unsupervised domain adaptation transfer learning for the fault diagnosis in rotating machinery
    Zhou, Xiangqi
    Fu, Zhongguang
    Gao, Yucai
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (10): : 106 - 113
  • [8] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [9] Research on Fault Diagnosis Method of Rotating Machinery Based on Deep Learning
    Chen, Zhouliang
    Li, Zhinong
    2017 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-HARBIN), 2017, : 1015 - +
  • [10] Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery
    Li, Xiang
    Li, Xu
    Ma, Hui
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 143