PEO-PDMS-based triboelectric nanogenerators as self-powered sensors for driver status monitoring

被引:36
|
作者
Luo, Fangyuan [1 ]
Chen, Bin [1 ]
Ran, Xu [1 ]
Ouyang, Wei [1 ]
Shang, Liang [2 ,3 ]
机构
[1] Southwest Univ, Coll Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuit & Intelligent, Chongqing 400715, Peoples R China
[2] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110016, Peoples R China
关键词
PEO-PDMS-based triboelectric nanogenerator; Self -powered sensor; Respiratory signal detection; Driver status monitoring; DROWSINESS DETECTION; PRESSURE SENSORS; POLARIZATION; CHALLENGES; FLUORIDE; SYSTEM; SAFETY; TEA;
D O I
10.1016/j.cej.2022.138961
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The number of traffic accidents is growing with the ever-increasing vehicles, and most of the traffic accidents are due to fatigue or distracted driving. Thus, it is necessary to monitor the driver's status in real-time. However, current detection methods mainly rely on sensors that need a continuous power supply. Here, a polyethylene oxide (PEO)-polydimethylsiloxane (PDMS)-based triboelectric nanogenerator as a self-powered sensor was designed for biological signal monitoring. According to the experimental results, by adding green and low-cost substances sodium chloride and tea powder in PEO and PDMS films, respectively, the output voltage and current of the sensor are increased by about 9.75 and 8.21 times. The proposed sensor has a high sensitivity of 0.7 V/kPa in the linear range of 0-50 kPa and a fast response time of 36 ms. Moreover, a high-performance and low-cost driver status monitoring system was designed. The sensors were attached to the driver's neck and seat belt to monitor neck activities and breathing states. By extracting parameters from the output voltage waveform, the system can judge and display the degrees of driver fatigue and concentration. The proposed system is conducive to improving road traffic safety and has the potential to be applied in intelligent transportation.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Li, Yingzhe
    Liu, Chaoran
    Hu, Sanshan
    Sun, Peng
    Fang, Lingxing
    Lazarouk, Serguei
    Labunov, Vladimir
    Yang, Weihuang
    Li, Dujuan
    Fan, Kai
    Wang, Gaofeng
    Dong, Linxi
    Che, Lufeng
    ACOUSTICS AUSTRALIA, 2022, 50 (03) : 383 - 391
  • [32] Self-Powered Sensing for Non-Full Pipe Fluidic Flow Based on Triboelectric Nanogenerators
    He, Siyang
    Wang, Zheng
    Zhang, Xiaosong
    Yuan, Zitang
    Sun, Yushan
    Cheng, Tinghai
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (02) : 2825 - 2832
  • [33] Self-powered microbial inactivation and particle removal in water by gelatin-based triboelectric nanogenerators
    Menge, Habtamu Gebeyehu
    Lim, Seungeun
    Choi, Shin Sik
    Cho, Chungyeon
    Park, Yong Tae
    CHEMICAL ENGINEERING JOURNAL, 2024, 490
  • [34] Self-powered smart agriculture sensing using triboelectric nanogenerators based on living plant leaves
    Luo, Yu
    Cao, Xia
    Wang, Zhong Lin
    NANO ENERGY, 2023, 107
  • [35] Self-Powered Acoustic Sensor Based on Triboelectric Nanogenerator for Smart Monitoring
    Yingzhe Li
    Chaoran Liu
    Sanshan Hu
    Peng Sun
    Lingxing Fang
    Serguei Lazarouk
    Vladimir Labunov
    Weihuang Yang
    Dujuan Li
    Kai Fan
    Gaofeng Wang
    Linxi Dong
    Lufeng Che
    Acoustics Australia, 2022, 50 : 383 - 391
  • [36] Self-powered triboelectric sensor for cooling fan monitoring
    Kim, Hakjeong
    Hwang, Hee Jae
    Kim, Wook
    Hong, Seongchan
    Yood, Jongwon
    Lim, Hyeongwook
    Choi, Dukhyun
    FUNCTIONAL COMPOSITES AND STRUCTURES, 2022, 4 (03):
  • [37] Double helix triboelectric nanogenerator for self-powered weight sensors
    Fu, Jiangming
    Xia, Kequan
    Xu, Zhiwei
    SENSORS AND ACTUATORS A-PHYSICAL, 2021, 323
  • [38] Toward Self-Powered Inertial Sensors Enabled by Triboelectric Effect
    Miao, Qianqian
    Liu, Chaoran
    Zhang, Nan
    Lu, Keyu
    Gu, Haojie
    Jiao, Jiwei
    Zhang, Jian
    Wang, Zuankai
    Zhou, Xiaofeng
    ACS APPLIED ELECTRONIC MATERIALS, 2020, 2 (10) : 3072 - 3087
  • [39] Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors
    Yang, Ya
    Lin, Zong-Hong
    Hou, Techien
    Zhang, Fang
    Wang, Zhong Lin
    NANO RESEARCH, 2012, 5 (12) : 888 - 895
  • [40] Stretchable, transparent triboelectric nanogenerator as a highly sensitive self-powered sensor for driver fatigue and distraction monitoring
    Lu, Xiao
    Zheng, Li
    Zhang, Haodong
    Wang, Wuhong
    Wang, Zhong Lin
    Sun, Chunwen
    NANO ENERGY, 2020, 78 (78)