Tangling Schedules Eases Hardware Connectivity Requirements for Quantum Error Correction

被引:4
作者
Geher, Gyorgy P. [1 ]
Crawford, Ophelia [1 ]
Campbell, Earl T. [1 ,2 ]
机构
[1] Riverlane, St Andrews House,59 St Andrews St, Cambridge CB2 3BZ, England
[2] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, England
来源
PRX QUANTUM | 2024年 / 5卷 / 01期
关键词
Computational problem - Error correction circuit - Fault-tolerant - Nearest-neighbour - Quanta computers - Quantum error corrections - Schedule methods - Scheduling rules - Stabiliser - Two-qubit gates;
D O I
10.1103/PRXQuantum.5.010348
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Error corrected quantum computers have the potential to change the way we solve computational problems. Quantum error correction involves repeated rounds of carefully scheduled gates to measure the stabilizers of a code. A set of scheduling rules is typically imposed on the order of gates to ensure that the circuit can be rearranged into an equivalent circuit that can be easily seen to measure the stabilizers. In this work, we ask what would happen if we break these rules and instead use circuit schedules that we describe as tangled. We find that tangling schedules generates long-range entanglement not accessible using nearest -neighbor two-qubit gates. Our tangled -schedule method provides a new tool for building quantum error -correction circuits and we explore applications to design new architectures for fault -tolerant quantum computers. Notably, we show that, for the widely used Pauli -based model of computation (achieved by lattice surgery), this access to longer -range entanglement can reduce the device connectivity requirements, without compromising on circuit depth.
引用
收藏
页数:26
相关论文
共 35 条
  • [1] Suppressing quantum errors by scaling a surface code logical qubit
    Acharya, Rajeev
    Aleiner, Igor
    Allen, Richard
    Andersen, Trond I.
    Ansmann, Markus
    Arute, Frank
    Arya, Kunal
    Asfaw, Abraham
    Atalaya, Juan
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Basso, Joao
    Bengtsson, Andreas
    Boixo, Sergio
    Bortoli, Gina
    Bourassa, Alexandre
    Bovaird, Jenna
    Brill, Leon
    Broughton, Michael
    Buckley, Bob B.
    Buell, David A.
    Burger, Tim
    Burkett, Brian
    Bushnell, Nicholas
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Cogan, Josh
    Collins, Roberto
    Conner, Paul
    Courtney, William
    Crook, Alexander L.
    Curtin, Ben
    Debroy, Dripto M.
    Barba, Alexander Del Toro
    Demura, Sean
    Dunsworth, Andrew
    Eppens, Daniel
    Erickson, Catherine
    Faoro, Lara
    Farhi, Edward
    Fatemi, Reza
    Burgos, Leslie Flores
    Forati, Ebrahim
    Fowler, Austin G.
    Foxen, Brooks
    Giang, William
    Gidney, Craig
    Gilboa, Dar
    [J]. NATURE, 2023, 614 (7949) : 676 - +
  • [2] Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity
    Babbush, Ryan
    Gidney, Craig
    Berry, Dominic W.
    Wiebe, Nathan
    McClean, Jarrod
    Paler, Alexandra
    Fowler, Austin
    Neven, Hartmut
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [3] The role of entropy in topological quantum error correction
    Beverland, Michael E.
    Brown, Benjamin J.
    Kastoryano, Michael J.
    Marolleau, Quentin
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [4] Logical Blocks for Fault-Tolerant Topological Quantum Computation
    Bombin, Hector
    Dawson, Chris
    V. Mishmash, Ryan
    Nickerson, Naomi
    Pastawski, Fernando
    Roberts, Sam
    [J]. PRX QUANTUM, 2023, 4 (02):
  • [5] Universal quantum computation with ideal Clifford gates and noisy ancillas
    Bravyi, S
    Kitaev, A
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [6] Trading Classical and Quantum Computational Resources
    Bravyi, Sergey
    Smith, Graeme
    Smolin, John A.
    [J]. PHYSICAL REVIEW X, 2016, 6 (02):
  • [7] Roads towards fault-tolerant universal quantum computation
    Campbell, Earl T.
    Terhal, Barbara M.
    Vuillot, Christophe
    [J]. NATURE, 2017, 549 (7671) : 172 - 179
  • [8] Circuit-level protocol and analysis for twist-based lattice surgery
    Chamberland, Christopher
    Campbell, Earl T.
    [J]. PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [9] Universal Quantum Computing with Twist-Free and Temporally Encoded Lattice Surgery
    Chamberland, Christopher
    Campbell, Earl T.
    [J]. PRX QUANTUM, 2022, 3 (01):
  • [10] Topological quantum memory
    Dennis, E
    Kitaev, A
    Landahl, A
    Preskill, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4452 - 4505