INVERSE SCATTERING FOR THE BIHARMONIC WAVE EQUATION WITH A RANDOM POTENTIAL
被引:5
作者:
Li, Peijun
论文数: 0引用数: 0
h-index: 0
机构:
Acad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaAcad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Li, Peijun
[1
,2
]
Wang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Acad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R ChinaAcad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
Wang, Xu
[1
,2
]
机构:
[1] Acad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
inverse scattering;
random potential;
biharmonic operator;
pseudodifferential operator;
principal symbol;
uniqueness;
UNIQUE CONTINUATION;
1ST-ORDER PERTURBATION;
ELASTIC-SCATTERING;
OPERATOR;
D O I:
10.1137/22M1538399
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider the inverse random potential scattering problem for the two- and three-dimensional biharmonic wave equation in lossy media. The potential is assumed to be a microlocally isotropic Gaussian rough field. The main contributions of the work are twofold. First, the unique continuation principle is proved for the fourth order biharmonic wave equation with rough potentials, and the well-posedness of the direct scattering problem is established in the distribution sense. Second, the correlation strength of the random potential is shown to be uniquely determined by the high frequency limit of the second moment of the backscattering data averaged over the frequency band. Moreover, we demonstrate that the expectation in the data can be removed and the data of a single realization is sufficient for the uniqueness of the inverse problem with probability one when the medium is lossless.
机构:
York Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, CanadaYork Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, Canada
Bugarija, Sophia
Gibson, Peter C.
论文数: 0引用数: 0
h-index: 0
机构:
York Univ, Dept Math & Stat, 4700 Keele St, Toronto, ON M3J 1P3, CanadaYork Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, Canada
Gibson, Peter C.
Hu, Guanghui
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R ChinaYork Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, Canada
Hu, Guanghui
Li, Peijun
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, W Lafayette, IN 47907 USAYork Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, Canada
Li, Peijun
Zhao, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R ChinaYork Univ, Dept Math & Stat, NSERC USRA, 4700 Keele St, Toronto, ON M3J 1P3, Canada
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Univ Helsinki, Dept Math & Stat, Helsinki, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
Liimatainen, Tony
Oksanen, Lauri
论文数: 0引用数: 0
h-index: 0
机构:
Univ Helsinki, Dept Math & Stat, Helsinki, FinlandUniv Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland