Machine learning-based prediction of vitamin D deficiency: NHANES 2001-2018

被引:4
|
作者
Guo, Jiale [1 ]
He, Qionghan [2 ]
Li, Yehai [1 ]
机构
[1] Anhui Med Univ, Chaohu Hosp, Dept Orthoped, Hefei, Peoples R China
[2] Anhui Med Univ, Dept Infect, Chaohu Hosp, Hefei, Peoples R China
来源
FRONTIERS IN ENDOCRINOLOGY | 2024年 / 15卷
关键词
machine learning; vitamin D deficiency; clinical decision rules; nutrition surveys; public health; INSUFFICIENCY; HOMEOSTASIS; PREVALENCE;
D O I
10.3389/fendo.2024.1327058
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Vitamin D deficiency is strongly associated with the development of several diseases. In the current context of a global pandemic of vitamin D deficiency, it is critical to identify people at high risk of vitamin D deficiency. There are no prediction tools for predicting the risk of vitamin D deficiency in the general community population, and this study aims to use machine learning to predict the risk of vitamin D deficiency using data that can be obtained through simple interviews in the community.Methods The National Health and Nutrition Examination Survey 2001-2018 dataset is used for the analysis which is randomly divided into training and validation sets in the ratio of 70:30. GBM, LR, NNet, RF, SVM, XGBoost methods are used to construct the models and their performance is evaluated. The best performed model was interpreted using the SHAP value and further development of the online web calculator.Results There were 62,919 participants enrolled in the study, and all participants included in the study were 2 years old and above, of which 20,204 (32.1%) participants had vitamin D deficiency. The models constructed by each method were evaluated using AUC as the primary evaluation statistic and ACC, PPV, NPV, SEN, SPE, F1 score, MCC, Kappa, and Brier score as secondary evaluation statistics. Finally, the XGBoost-based model has the best and near-perfect performance. The summary plot of SHAP values shows that the top three important features for this model are race, age, and BMI. An online web calculator based on this model can easily and quickly predict the risk of vitamin D deficiency.Conclusion In this study, the XGBoost-based prediction tool performs flawlessly and is highly accurate in predicting the risk of vitamin D deficiency in community populations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Machine Learning-Based Approach for Crop Price Prediction
    Gururaj, H. L.
    Janhavi, V.
    Lakshmi, H.
    Soundarya, B. C.
    Paramesha, K.
    Ramesh, B.
    Rajendra, A. B.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2024, 33 (03)
  • [22] Machine Learning-Based Prediction of Stroke in Emergency Departments
    Abedi, Vida
    Misra, Debdipto
    Chaudhary, Durgesh
    Avula, Venkatesh
    Schirmer, Clemens M.
    Li, Jiang
    Zand, Ramin
    THERAPEUTIC ADVANCES IN NEUROLOGICAL DISORDERS, 2024, 17
  • [23] Machine learning-based model for prediction of concrete strength
    Aswal, Vivek Singh
    Singh, B. K.
    Maheshwari, Rohit
    MULTISCALE AND MULTIDISCIPLINARY MODELING EXPERIMENTS AND DESIGN, 2025, 8 (01)
  • [24] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [25] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363
  • [26] Machine Learning-based Seismic Prediction of Building Structures
    Liu, Shuai
    Peng, Hailiang
    Deng, Xiaolu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 256 - 261
  • [27] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [28] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505
  • [29] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [30] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276