Therapeutic potential of combating cancer by restoring wild-type p53 through mRNA nanodelivery

被引:8
作者
Kamath, Divya [1 ]
Iwakuma, Tomoo [2 ]
Bossmann, Stefan H. [1 ]
机构
[1] Univ Kansas, Dept Canc Biol, Med Ctr, 3901 Rainbow Blvd,mailstop 1071, Kansas City, KS 66160 USA
[2] Childrens Mercy Hosp, 2401 Gillham Rd,Adele Hall Campus, Kansas City, MO 64108 USA
关键词
p53; mutant; cancer; Gene therapy; Nanotechnology; Restoring wild -type p53; GAIN-OF-FUNCTION; MUTANT P53; RESTORATION; MUTATION;
D O I
10.1016/j.nano.2024.102732
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Among the tumor suppressor genes, TP53 is the most frequently mutated in human cancers, and most mutations are missense mutations causing production of mutant p53 (mutp53) proteins. TP53 mutations not only results in loss of function (LOH) as a transcription factor and a tumor suppressor, but also gain wild-type p53 (WTp53)independent oncogenic functions that enhance cancer metastasis and progression (Yamamoto and Iwakuma, 2018; Zhang et al., 2022). TP53 has extensively been studied as a therapeutic target as well as for drug development and therapies, however with limited success. Achieving targeted therapies for restoration of WTp53 function and depletion or repair of mutant p53 (mutp53) will have far reaching implication in cancer treatment and therapies. This review briefly discusses the role of p53 mutation in cancer and the therapeutic potential of restoring WTp53 through the advances in mRNA nanomedicine.
引用
收藏
页数:5
相关论文
共 61 条
[1]   mRNA therapeutics in cancer immunotherapy [J].
Beck, Jan D. ;
Reidenbach, Daniel ;
Salomon, Nadja ;
Sahin, Ugur ;
Tureci, Ozlem ;
Vormehr, Mathias ;
Kranz, Lena M. .
MOLECULAR CANCER, 2021, 20 (01)
[2]   Restoration of wild-type p53 function in human cancer: Relevance for tumor therapy [J].
Bossi, Gianluca ;
Sacchi, Ada .
HEAD AND NECK-JOURNAL FOR THE SCIENCES AND SPECIALTIES OF THE HEAD AND NECK, 2007, 29 (03) :272-284
[3]  
Cancer Genome Atlas Research Network, 2014, Nature, V511, P543, DOI [10.1038/s41586-018-0228-6, 10.1038/nature13385]
[4]  
Cancer Genome Atlas Research Network, 2017, Cell, V169
[5]   Exploring the multiple roles of guardian of the genome: P53 [J].
Feroz, Wasim ;
Sheikh, Arwah Mohammad Ali .
EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS, 2020, 21 (01)
[6]   Epigenetic plasticity and the hallmarks of cancer [J].
Flavahan, William A. ;
Gaskell, Elizabeth ;
Bernstein, Bradley E. .
SCIENCE, 2017, 357 (6348)
[7]   Codon optimization with deep learning to enhance protein expression [J].
Fu, Hongguang ;
Liang, Yanbing ;
Zhong, Xiuqin ;
Pan, ZhiLing ;
Huang, Lei ;
Zhang, HaiLin ;
Xu, Yang ;
Zhou, Wei ;
Liu, Zhong .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   mRNA cap regulation in mammalian cell function and fate [J].
Galloway, Alison ;
Cowling, Victoria H. .
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2019, 1862 (03) :270-279
[9]   Lipid-Nucleic Acid Complexes: Physicochemical Aspects and Prospects for Cancer Treatment [J].
Gaspar, Ricardo ;
Coelho, Filipe ;
Silva, Bruno F. B. .
MOLECULES, 2020, 25 (21)
[10]   Patterns of somatic mutation in human cancer genomes [J].
Greenman, Christopher ;
Stephens, Philip ;
Smith, Raffaella ;
Dalgliesh, Gillian L. ;
Hunter, Christopher ;
Bignell, Graham ;
Davies, Helen ;
Teague, Jon ;
Butler, Adam ;
Edkins, Sarah ;
O'Meara, Sarah ;
Vastrik, Imre ;
Schmidt, Esther E. ;
Avis, Tim ;
Barthorpe, Syd ;
Bhamra, Gurpreet ;
Buck, Gemma ;
Choudhury, Bhudipa ;
Clements, Jody ;
Cole, Jennifer ;
Dicks, Ed ;
Forbes, Simon ;
Gray, Kris ;
Halliday, Kelly ;
Harrison, Rachel ;
Hills, Katy ;
Hinton, Jon ;
Jenkinson, Andy ;
Jones, David ;
Menzies, Andy ;
Mironenko, Tatiana ;
Perry, Janet ;
Raine, Keiran ;
Richardson, Dave ;
Shepherd, Rebecca ;
Small, Alexandra ;
Tofts, Calli ;
Varian, Jennifer ;
Webb, Tony ;
West, Sofie ;
Widaa, Sara ;
Yates, Andy ;
Cahill, Daniel P. ;
Louis, David N. ;
Goldstraw, Peter ;
Nicholson, Andrew G. ;
Brasseur, Francis ;
Looijenga, Leendert ;
Weber, Barbara L. ;
Chiew, Yoke-Eng .
NATURE, 2007, 446 (7132) :153-158