Well-designed glucose precursor carbon/g-C3N4 nanocomposite for enhanced visible light photocatalytic CO2 reduction activity

被引:11
|
作者
Bafaqeer, Abdullah [1 ]
Amin, Nor Aishah Saidina [2 ]
Ummer, Aniz Chennampilly [1 ]
Ahmed, Shakeel [1 ]
Al-Qathmi, Ahmed T. [1 ]
Usman, Jamilu [3 ]
Kulal, Nagendra [1 ]
Tanimu, Gazali [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, UTM, Johor Baharu 81310, Malaysia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
关键词
Carbon/g-C; 3; N; 4; nanocomposite; Glucose; Production of CO and CH 4; CO2; reduction; GRAPHITIC CARBON NITRIDE; TUNABLE BAND-STRUCTURE; NANOSHEETS; G-C3N4; PERFORMANCE; CAPTURE;
D O I
10.1016/j.jphotochem.2023.115272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabrication of glucose precursor carbon-doped g-C3N4 nanocomposite (C/g-C3N4) for enhancing photocatalytic CO2 reduction into syngas (CO, CH4) has been investigated. The samples were successfully synthesized via a twostep thermal treatment and tested in a fixed bed reactor under visible light. The 0.2 % glucose precursor carbondoped over g-C3N4 photocatalyst has demonstrated excellent activity in converting CO2 to CO and CH4 under visible light. The main product yield, CO of 898.9 mu mol g-cat  1 was produced over 0.2 % C/g-C3N4, which is 4.6 folds the amount of CO obtained over the g-C3N4 (196.8 mu mol g-cat  1). The XPS results confirmed the formation of a C-O-C bond between carbon and g-C3N4, resulting in a strong interaction between carbon and g-C3N4. Carbon-doped g-C3N4 possesses a narrow energy band and the ability to effectively absorb solar light, which enables efficient transportation of electrons generated by photon excitation. Possible reaction mechanisms for photoreduction of CO2 over carbon-doped g-C3N4 photocatalyst were proposed in order to understand the movement of electrons and holes. This work provides a simple method for designing highly efficient carbonbased photocatalysts for potential application in photocatalytic CO2 reduction using solar energy.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] MoS2 quantum dots decorated g-C3N4/Ag heterostructures for enhanced visible light photocatalytic activity
    Fu, Yanhui
    Liang, Wei
    Guo, Jinqiu
    Tang, Hua
    Liu, Shuaishuai
    APPLIED SURFACE SCIENCE, 2018, 430 : 234 - 242
  • [42] Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2
    Li, Xin
    Edelmannova, Miroslava
    Huo, Pengwei
    Koci, Kamila
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (08) : 3299 - 3313
  • [43] Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide
    Chen, Quan-Liang
    Liu, Yi-Ling
    Tong, Li-Ge
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [44] Recent progress in modifications of g-C3N4 for photocatalytic hydrogen evolution and CO2 reduction
    Rana, Garima
    Dhiman, Pooja
    Kumar, Amit
    Dawi, Elmuez A.
    Sharma, Gaurav
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2024, 39 (01)
  • [45] Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity
    Fu, Junwei
    Zhu, Bicheng
    Jiang, Chuanjia
    Cheng, Bei
    You, Wei
    Yu, Jiaguo
    SMALL, 2017, 13 (15)
  • [46] Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance
    Wang, Ke
    Li, Qin
    Liu, Baoshun
    Cheng, Bei
    Ho, Wingkei
    Yu, Jiaguo
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 176 : 44 - 52
  • [47] Indirect Z-Scheme BiOl/g-C3N4 Photocatalysts with Enhanced Photoreduction CO2 Activity under Visible Light Irradiation
    Wang, Ji-Chao
    Yao, Hong-Chang
    Fan, Ze-Yu
    Zhang, Lin
    Wang, Jian-She
    Zang, Shuang-Quan
    Li, Zhong-Jun
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (06) : 3765 - 3775
  • [48] Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles
    Ge, Lei
    Han, Changcun
    Liu, Jing
    Li, Yunfeng
    APPLIED CATALYSIS A-GENERAL, 2011, 409 : 215 - 222
  • [49] A review of g-C3N4-based photocatalytic materials for photocatalytic CO2 reduction
    Tang, Jing
    Guo, Chuanyu
    Wang, Tingting
    Cheng, Xiaoli
    Huo, Lihua
    Zhang, Xianfa
    Huang, Chaobo
    Major, Zoltan
    Xu, Yingming
    CARBON NEUTRALIZATION, 2024, 3 (04): : 557 - 583
  • [50] Heterostructures based on g-C3N4 for the photocatalytic CO2 reduction
    Alekseev, Roman F.
    Saraev, Andrey A.
    Kurenkova, Anna Yu.
    Kozlova, Ekaterina A.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (05)