Well-designed glucose precursor carbon/g-C3N4 nanocomposite for enhanced visible light photocatalytic CO2 reduction activity

被引:11
|
作者
Bafaqeer, Abdullah [1 ]
Amin, Nor Aishah Saidina [2 ]
Ummer, Aniz Chennampilly [1 ]
Ahmed, Shakeel [1 ]
Al-Qathmi, Ahmed T. [1 ]
Usman, Jamilu [3 ]
Kulal, Nagendra [1 ]
Tanimu, Gazali [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Refining & Adv Chem, Dhahran 31261, Saudi Arabia
[2] Univ Teknol Malaysia, Fac Chem & Energy Engn, UTM, Johor Baharu 81310, Malaysia
[3] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
关键词
Carbon/g-C; 3; N; 4; nanocomposite; Glucose; Production of CO and CH 4; CO2; reduction; GRAPHITIC CARBON NITRIDE; TUNABLE BAND-STRUCTURE; NANOSHEETS; G-C3N4; PERFORMANCE; CAPTURE;
D O I
10.1016/j.jphotochem.2023.115272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Fabrication of glucose precursor carbon-doped g-C3N4 nanocomposite (C/g-C3N4) for enhancing photocatalytic CO2 reduction into syngas (CO, CH4) has been investigated. The samples were successfully synthesized via a twostep thermal treatment and tested in a fixed bed reactor under visible light. The 0.2 % glucose precursor carbondoped over g-C3N4 photocatalyst has demonstrated excellent activity in converting CO2 to CO and CH4 under visible light. The main product yield, CO of 898.9 mu mol g-cat  1 was produced over 0.2 % C/g-C3N4, which is 4.6 folds the amount of CO obtained over the g-C3N4 (196.8 mu mol g-cat  1). The XPS results confirmed the formation of a C-O-C bond between carbon and g-C3N4, resulting in a strong interaction between carbon and g-C3N4. Carbon-doped g-C3N4 possesses a narrow energy band and the ability to effectively absorb solar light, which enables efficient transportation of electrons generated by photon excitation. Possible reaction mechanisms for photoreduction of CO2 over carbon-doped g-C3N4 photocatalyst were proposed in order to understand the movement of electrons and holes. This work provides a simple method for designing highly efficient carbonbased photocatalysts for potential application in photocatalytic CO2 reduction using solar energy.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH
    Guo, Haiwei
    Chen, Mengqing
    Zhong, Qin
    Wang, Yanan
    Ma, Weihua
    Ding, Jie
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 233 - 241
  • [22] 1,3,5-Benzenetriyl substituted g-C3N4 for enhanced visible light photocatalytic activity
    Liang, Yan
    Sun, Na
    Zang, Chengjie
    Chen, Feng
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (07) : 3641 - 3654
  • [23] Photocatalytic reduction of CO2 to CO over copper decorated g-C3N4 nanosheets with enhanced yield and selectivity
    Shi, Guodong
    Yang, Lin
    Liu, Zhuowen
    Chen, Xiao
    Zhou, Jianqing
    Yu, Ying
    APPLIED SURFACE SCIENCE, 2018, 427 : 1165 - 1173
  • [24] g-C3N4/Uio-66-NH2 nanocomposites with enhanced visible light photocatalytic activity for hydrogen evolution and oxidation of amines to imines
    Zhang, Shishen
    Chen, Kelong
    Peng, Wen
    Huang, Jianhua
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (07) : 3052 - 3061
  • [25] Sulfur/g-C3N4 Composites with Enhanced Visible Light Photocatalytic Activity
    Xu, Yao
    Zhang, Wei-De
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (12) : 2611 - 2617
  • [26] NiO/g-C3N4 p-n Heterojunctions Wrapped by rGO for the Enhanced CO2 Photocatalytic Reduction
    Tao, Fei-Fei
    Dong, Yali
    Yang, Lingang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (17) : 6709 - 6718
  • [27] Enhanced performance of attapulgite-supported g-C3N4 for photocatalytic CO2 reduction
    Yang, Wenqin
    Zhou, Yu
    Zhao, Jiale
    She, Houde
    Zhang, Yang
    Peng, Jianhong
    Huang, Jingwei
    Wang, Lei
    Wang, Qizhao
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 692
  • [28] Visible light activated photocatalytic behaviour of Eu (III) modified g-C3N4 for CO2 reduction and H2 evolution
    Tang, Jun-ying
    Guo, Rui-tang
    Pan, Wei-guo
    Zhou, Wei-guo
    Huang, Chun-ying
    APPLIED SURFACE SCIENCE, 2019, 467 : 206 - 212
  • [29] Tailoring the properties of g-C3N4 with CuO for enhanced photoelectrocatalytic CO2 reduction to methanol
    Jiang, Xiao Xia
    Hu, Xiu De
    Tarek, Mostafa
    Saravanan, Prabhu
    Alqadhi, Radfan
    Chin, Sim Yee
    Khan, Md Maksudur Rahman
    JOURNAL OF CO2 UTILIZATION, 2020, 40 (40)
  • [30] An inverse opal TiO2/g-C3N4 composite with a heterojunction for enhanced visible light-driven photocatalytic activity
    Lei, Juying
    Chen, Bin
    Lv, Weijia
    Zhou, Liang
    Wang, Lingzhi
    Liu, Yongdi
    Zhang, Jinlong
    DALTON TRANSACTIONS, 2019, 48 (10) : 3486 - 3495