High-order time-reversal symmetry breaking normal state

被引:6
|
作者
Zeng, Meng [1 ]
Hu, Lun-Hui [2 ]
Hu, Hong-Ye [1 ]
You, Yi-Zhuang [1 ]
Wu, Congjun [3 ,4 ,5 ,6 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[2] Zhejiang Univ, Dept Phys, Hangzhou 310058, Peoples R China
[3] Westlake Univ, Sch Sci, Dept Phys, New Cornerstone Sci Lab, Hangzhou 310024, Peoples R China
[4] Westlake Univ, Inst Theoret Sci, Hangzhou 310024, Peoples R China
[5] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, Hangzhou 310024, Peoples R China
[6] Westlake Inst Adv Study, Inst Nat Sci, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
superconductivity; strong correlation; time-reversal breaking; charge-4e; SUPERCONDUCTIVITY; FLUCTUATIONS; PHASE;
D O I
10.1007/s11433-023-2287-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors. When two superconducting gap functions with different symmetries compete, the relative phase channel (theta- equivalent to theta 1 - theta 2) exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where theta 1,2 are the phases of two gap functions. In contrast, the U(1) symmetry in the channel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta _ + } \equiv {{{\theta _1} + {\theta _2}} \over 2}$$\end{document} is intact. The phase locking, i.e., ordering of theta-, can take place in the phase fluctuation regime before the onset of superconductivity, i.e., when theta+ is disordered. If theta- is pinned at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pm {\pi \over 2}$$\end{document}, then time-reversal symmetry is broken in the normal state, otherwise, if theta- = 0, or, pi, rotational symmetry is broken, leading to a nematic normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can be viewed as a high order symmetry breaking. We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds to ordering of theta+ but with theta- disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order
    Machida, Yo
    Nakatsuji, Satoru
    Onoda, Shigeki
    Tayama, Takashi
    Sakakibara, Toshiro
    NATURE, 2010, 463 (7278) : 210 - 213
  • [42] Time-reversal symmetry breaking versus chiral symmetry breaking in twisted bilayer graphene
    Gonzalez, J.
    Stauber, T.
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [43] Time-Reversal Symmetry-Breaking Flux State in an Organic Dirac Fermion System
    Morinari, Takao
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (07)
  • [44] Mechanism for a pairing state with time-reversal symmetry breaking in iron-based superconductors
    Platt, Christian
    Thomale, Ronny
    Honerkamp, Carsten
    Zhang, Shou-Cheng
    Hanke, Werner
    PHYSICAL REVIEW B, 2012, 85 (18)
  • [45] ROBUST ACOUSTIC TIME-REVERSAL WITH HIGH-ORDER MULTIPLE-SCATTERING
    DERODE, A
    ROUX, P
    FINK, M
    PHYSICAL REVIEW LETTERS, 1995, 75 (23) : 4206 - 4209
  • [46] Phase transitions and anomalous normal state in superconductors with broken time-reversal symmetry
    Bojesen, Troels Arnfred
    Babaev, Egor
    Sudbo, Asle
    PHYSICAL REVIEW B, 2014, 89 (10):
  • [47] Topological Protection Brought to Light by the Time-Reversal Symmetry Breaking
    Piatrusha, S. U.
    Tikhonov, E. S.
    Kvon, Z. D.
    Mikhailov, N. N.
    Dvoretsky, S. A.
    Khrapai, V. S.
    PHYSICAL REVIEW LETTERS, 2019, 123 (05)
  • [48] Time-reversal and rotation symmetry breaking superconductivity in Dirac materials
    Chirolli, Luca
    de Juan, Fernando
    Guinea, Francisco
    PHYSICAL REVIEW B, 2017, 95 (20)
  • [49] Evidence for time-reversal symmetry-breaking kagome superconductivity
    Deng, Hanbin
    Liu, Guowei
    Guguchia, Z.
    Yang, Tianyu
    Liu, Jinjin
    Wang, Zhiwei
    Xie, Yaofeng
    Shao, Sen
    Ma, Haiyang
    Liege, William
    Bourdarot, Frederic
    Yan, Xiao-Yu
    Qin, Hailang
    Mielke, C.
    Khasanov, R.
    Luetkens, H.
    Wu, Xianxin
    Chang, Guoqing
    Liu, Jianpeng
    Christensen, Morten Holm
    Kreisel, Andreas
    Andersen, Brian Moller
    Huang, Wen
    Zhao, Yue
    Bourges, Philippe
    Yao, Yugui
    Dai, Pengcheng
    Yin, Jia-Xin
    NATURE MATERIALS, 2024, 23 (12) : 1639 - 1644
  • [50] Spontaneous Time-reversal Symmetry Breaking in 124Cs
    Grodner, E.
    Srebrny, J.
    Pasternak, A. A.
    Droste, Ch.
    Kowalczyka, M.
    Kisielinski, M.
    Mierzejewski, J.
    Golebiowski, M.
    Marchlewski, T.
    Krajewski, T.
    Karpinski, D.
    Olszewski, P.
    Jones, P.
    Abraham, T.
    Perkowski, J.
    Janiak, L.
    Samorajczyk, J.
    Andrzejewski, J.
    Kownacki, J.
    Hadynska-Klek, K.
    Napiorkowski, P.
    Komorowska, M.
    Ozmen, S. F.
    NUCLEAR STRUCTURE AND DYNAMICS '12, 2012, 1491 : 140 - 143