High-order time-reversal symmetry breaking normal state

被引:6
|
作者
Zeng, Meng [1 ]
Hu, Lun-Hui [2 ]
Hu, Hong-Ye [1 ]
You, Yi-Zhuang [1 ]
Wu, Congjun [3 ,4 ,5 ,6 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[2] Zhejiang Univ, Dept Phys, Hangzhou 310058, Peoples R China
[3] Westlake Univ, Sch Sci, Dept Phys, New Cornerstone Sci Lab, Hangzhou 310024, Peoples R China
[4] Westlake Univ, Inst Theoret Sci, Hangzhou 310024, Peoples R China
[5] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, Hangzhou 310024, Peoples R China
[6] Westlake Inst Adv Study, Inst Nat Sci, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
superconductivity; strong correlation; time-reversal breaking; charge-4e; SUPERCONDUCTIVITY; FLUCTUATIONS; PHASE;
D O I
10.1007/s11433-023-2287-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors. When two superconducting gap functions with different symmetries compete, the relative phase channel (theta- equivalent to theta 1 - theta 2) exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where theta 1,2 are the phases of two gap functions. In contrast, the U(1) symmetry in the channel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta _ + } \equiv {{{\theta _1} + {\theta _2}} \over 2}$$\end{document} is intact. The phase locking, i.e., ordering of theta-, can take place in the phase fluctuation regime before the onset of superconductivity, i.e., when theta+ is disordered. If theta- is pinned at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pm {\pi \over 2}$$\end{document}, then time-reversal symmetry is broken in the normal state, otherwise, if theta- = 0, or, pi, rotational symmetry is broken, leading to a nematic normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can be viewed as a high order symmetry breaking. We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds to ordering of theta+ but with theta- disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Spectroscopic signatures of time-reversal symmetry breaking superconductivity
    Nicholas R. Poniatowski
    Jonathan B. Curtis
    Amir Yacoby
    Prineha Narang
    Communications Physics, 5
  • [32] Pseudomagnetic catalysis of the time-reversal symmetry breaking in graphene
    Herbut, Igor F.
    PHYSICAL REVIEW B, 2008, 78 (20):
  • [33] Quantum walk search with time-reversal symmetry breaking
    Wong, Thomas G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (40)
  • [34] Spontaneous breaking of time-reversal symmetry in topological superconductors
    Karnaukhov, Igor N.
    SCIENTIFIC REPORTS, 2017, 7
  • [35] Spectroscopic signatures of time-reversal symmetry breaking superconductivity
    Poniatowski, Nicholas R.
    Curtis, Jonathan B.
    Yacoby, Amir
    Narang, Prineha
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [36] Search for time-reversal symmetry breaking in unconventional superconductors
    Kapitulnik, Aharon
    Xia, Jing
    Schemm, Elizabeth
    PHYSICA B-CONDENSED MATTER, 2009, 404 (3-4) : 507 - 509
  • [37] Quantum Transport Enhancement by Time-Reversal Symmetry Breaking
    Zimboras, Zolta
    Faccin, Mauro
    Kadar, Zoltan
    Whitfield, James D.
    Lanyon, Ben P.
    Biamonte, Jacob
    SCIENTIFIC REPORTS, 2013, 3
  • [38] Integrated Topological Photonics with Time-reversal Symmetry Breaking
    Fang, Kejie
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 803 - 803
  • [39] High-order harmonic generation in three-dimensional Weyl semimetals with broken time-reversal symmetry
    Avetissian, H. K.
    Avetisyan, V. N.
    Avchyan, B. R.
    Mkrtchian, G. F.
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [40] Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order
    Yo Machida
    Satoru Nakatsuji
    Shigeki Onoda
    Takashi Tayama
    Toshiro Sakakibara
    Nature, 2010, 463 : 210 - 213