High-order time-reversal symmetry breaking normal state

被引:6
|
作者
Zeng, Meng [1 ]
Hu, Lun-Hui [2 ]
Hu, Hong-Ye [1 ]
You, Yi-Zhuang [1 ]
Wu, Congjun [3 ,4 ,5 ,6 ]
机构
[1] Univ Calif San Diego, Dept Phys, San Diego, CA 92093 USA
[2] Zhejiang Univ, Dept Phys, Hangzhou 310058, Peoples R China
[3] Westlake Univ, Sch Sci, Dept Phys, New Cornerstone Sci Lab, Hangzhou 310024, Peoples R China
[4] Westlake Univ, Inst Theoret Sci, Hangzhou 310024, Peoples R China
[5] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, Hangzhou 310024, Peoples R China
[6] Westlake Inst Adv Study, Inst Nat Sci, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
superconductivity; strong correlation; time-reversal breaking; charge-4e; SUPERCONDUCTIVITY; FLUCTUATIONS; PHASE;
D O I
10.1007/s11433-023-2287-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spontaneous time-reversal symmetry breaking plays an important role in studying strongly correlated unconventional superconductors. When two superconducting gap functions with different symmetries compete, the relative phase channel (theta- equivalent to theta 1 - theta 2) exhibits an Ising-type Z2 symmetry due to the second order Josephson coupling, where theta 1,2 are the phases of two gap functions. In contrast, the U(1) symmetry in the channel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\theta _ + } \equiv {{{\theta _1} + {\theta _2}} \over 2}$$\end{document} is intact. The phase locking, i.e., ordering of theta-, can take place in the phase fluctuation regime before the onset of superconductivity, i.e., when theta+ is disordered. If theta- is pinned at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pm {\pi \over 2}$$\end{document}, then time-reversal symmetry is broken in the normal state, otherwise, if theta- = 0, or, pi, rotational symmetry is broken, leading to a nematic normal state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory, which can be viewed as a high order symmetry breaking. We employ an effective two-component XY-model assisted by a renormalization group analysis to address this problem. As a natural by-product, we also find the other interesting intermediate phase corresponds to ordering of theta+ but with theta- disordered. This is the quartetting, or, charge-4e, superconductivity, which occurs above the low temperature Z2-breaking charge-2e superconducting phase. Our results provide useful guidance for studying novel symmetry breaking phases in strongly correlated superconductors.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] High-order time-reversal symmetry breaking normal state
    Meng Zeng
    Lun-Hui Hu
    Hong-Ye Hu
    Yi-Zhuang You
    Congjun Wu
    Science China Physics, Mechanics & Astronomy, 2024, 67
  • [2] High-order time-reversal symmetry breaking normal state
    Meng Zeng
    Lun-Hui Hu
    Hong-Ye Hu
    Yi-Zhuang You
    Congjun Wu
    Science China(Physics,Mechanics & Astronomy), 2024, (03) : 140 - 152
  • [3] Time-reversal symmetry breaking?
    Borisenko, SV
    Kordyuk, AA
    Koitzsch, A
    Knupfer, M
    Fink, J
    Berger, H
    Lin, CT
    NATURE, 2004, 431 (7004) : 1 - 2
  • [4] Time-reversal symmetry breaking?
    Sergey V. Borisenko
    Alexander A. Kordyuk
    Andreas Koitzsch
    Martin Knupfer
    Jörg Fink
    Helmuth Berger
    Chengtian T. Lin
    Nature, 2004, 431 : 1 - 2
  • [5] Time-reversal symmetry breaking in the superconducting state of ScS
    Arushi
    Kushwaha, R. K.
    Singh, D.
    Hillier, A. D.
    Scheurer, M. S.
    Singh, R. P.
    PHYSICAL REVIEW B, 2022, 106 (02)
  • [6] Time-reversal symmetry breaking? Reply
    Campuzano, JC
    Kaminski, A
    Rosenkranz, S
    Fretwell, HM
    NATURE, 2004, 431 (7004) : 2 - 3
  • [7] Time-reversal symmetry breaking? (reply)
    Juan C. Campuzano
    Adam Kaminski
    Stephan Rosenkranz
    Helen M. Fretwell
    Nature, 2004, 431 : 2 - 3
  • [8] Time-reversal symmetry-breaking charge order in a kagome superconductor
    Mielke, C.
    Das, D.
    Yin, J-X
    Liu, H.
    Gupta, R.
    Jiang, Y-X
    Medarde, M.
    Wu, X.
    Lei, H. C.
    Chang, J.
    Dai, Pengcheng
    Si, Q.
    Miao, H.
    Thomale, R.
    Neupert, T.
    Shi, Y.
    Khasanov, R.
    Hasan, M. Z.
    Luetkens, H.
    Guguchia, Z.
    NATURE, 2022, 602 (7896) : 245 - +
  • [9] Time-reversal symmetry-breaking charge order in a kagome superconductor
    C. Mielke
    D. Das
    J.-X. Yin
    H. Liu
    R. Gupta
    Y.-X. Jiang
    M. Medarde
    X. Wu
    H. C. Lei
    J. Chang
    Pengcheng Dai
    Q. Si
    H. Miao
    R. Thomale
    T. Neupert
    Y. Shi
    R. Khasanov
    M. Z. Hasan
    H. Luetkens
    Z. Guguchia
    Nature, 2022, 602 : 245 - 250
  • [10] Time-reversal symmetry breaking in superconductors through loop supercurrent order
    Ghosh, Sudeep Kumar
    Annett, James F.
    Quintanilla, Jorge
    NEW JOURNAL OF PHYSICS, 2021, 23 (08):