Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning

被引:0
作者
Yasuda, Shohei [1 ]
Katayama, Hiroki [1 ]
Nakanishi, Wataru [2 ]
Iryo, Takamasa [3 ]
机构
[1] Univ Tokyo, Dept Civil Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Kanazawa Univ, Inst Sci & Engn, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, 6-6-06 Aramaki Aza Aoba,Aoba Ku, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Network representation; Traffic state prediction; Deep learning; AGGREGATION;
D O I
10.1007/s13177-023-00383-z
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In this study, we propose a trajectory data-driven network representation method, specifically leveraging directional statistics. This approach allows us to extract major intersections and define links from observed trajectories, thereby mitigating the reliance on existing network data and map matching. We apply Graph Convolutional Networks and Long-Short Term Memory models to the trajectory data-driven network representation, suggesting the potential for fast and accurate traffic state prediction. The results imply significant reduction in computational complexity while demonstrating promising prediction accuracy. Our proposed method offers a valuable approach for analyzing and modeling transportation networks using real-world trajectory data, providing insights into traffic patterns and facilitating the exploration of more efficient traffic management strategies.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
[41]   A Data-Driven Deep Learning Network for Massive MIMO Detection with High-order QAM [J].
Yu, Yongzhi ;
Ying, Jie ;
Wang, Ping ;
Guo, Limin .
JOURNAL OF COMMUNICATIONS AND NETWORKS, 2023, 25 (01) :50-60
[42]   Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion [J].
Saadat Izadi ;
Mahmood Ahmadi ;
Amir Rajabzadeh .
Journal of Network and Systems Management, 2022, 30
[43]   A Deep Learning Approach for Botnet Detection Using Raw Network Traffic Data [J].
Mohaddeseh Shahhosseini ;
Hoda Mashayekhi ;
Mohsen Rezvani .
Journal of Network and Systems Management, 2022, 30
[44]   A Deep Learning Approach for Botnet Detection Using Raw Network Traffic Data [J].
Shahhosseini, Mohaddeseh ;
Mashayekhi, Hoda ;
Rezvani, Mohsen .
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (03)
[45]   Network Traffic Forecasting Based on Fixed Telecommunication Data Using Deep Learning [J].
Alizadeh, Mousa ;
Beheshti, Mohammad T. H. ;
Ramezani, Amin ;
Saadatinezhad, Hadis .
2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
[46]   Network Traffic Classification Using Deep Learning Networks and Bayesian Data Fusion [J].
Izadi, Saadat ;
Ahmadi, Mahmood ;
Rajabzadeh, Amir .
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (02)
[47]   Data-Driven 4D Trajectory Prediction Model Using Attention-TCN-GRU [J].
Ma, Lan ;
Meng, Xianran ;
Wu, Zhijun .
AEROSPACE, 2024, 11 (04)
[48]   Vessel Trajectory Prediction at Inner Harbor Based on Deep Learning Using AIS Data [J].
Shin, Gil-Ho ;
Yang, Hyun .
JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
[49]   Data-Driven Trajectory Prediction of Grid Power Frequency Based on Neural Models [J].
Chamorro, Harold R. ;
Orjuela-Canon, Alvaro D. ;
Ganger, David ;
Persson, Mattias ;
Gonzalez-Longatt, Francisco ;
Alvarado-Barrios, Lazaro ;
Sood, Vijay K. ;
Martinez, Wilmar .
ELECTRONICS, 2021, 10 (02) :1-21
[50]   Data-driven models for accurate estimation of fuel consumption using Deep Learning techniques [J].
Gracia-Berna, Antonio ;
Vega-Astorga, Ruben ;
del Pozo-Dominguez, Maria ;
Lopez-Leones, Javier .
2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,