Trajectory Data-Driven Network Representation for Traffic State Prediction using Deep Learning

被引:0
作者
Yasuda, Shohei [1 ]
Katayama, Hiroki [1 ]
Nakanishi, Wataru [2 ]
Iryo, Takamasa [3 ]
机构
[1] Univ Tokyo, Dept Civil Engn, 7-3-1 Hongo,Bunkyo Ku, Tokyo 1138656, Japan
[2] Kanazawa Univ, Inst Sci & Engn, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan
[3] Tohoku Univ, Grad Sch Informat Sci, 6-6-06 Aramaki Aza Aoba,Aoba Ku, Sendai, Miyagi 9808579, Japan
基金
日本学术振兴会;
关键词
Network representation; Traffic state prediction; Deep learning; AGGREGATION;
D O I
10.1007/s13177-023-00383-z
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
In this study, we propose a trajectory data-driven network representation method, specifically leveraging directional statistics. This approach allows us to extract major intersections and define links from observed trajectories, thereby mitigating the reliance on existing network data and map matching. We apply Graph Convolutional Networks and Long-Short Term Memory models to the trajectory data-driven network representation, suggesting the potential for fast and accurate traffic state prediction. The results imply significant reduction in computational complexity while demonstrating promising prediction accuracy. Our proposed method offers a valuable approach for analyzing and modeling transportation networks using real-world trajectory data, providing insights into traffic patterns and facilitating the exploration of more efficient traffic management strategies.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 50 条
[21]   Optimization: data-driven management using deep learning in cloud computing [J].
Karim, Sajida ;
He, Hui .
2022 23RD ASIA-PACIFIC NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (APNOMS 2022), 2022, :423-426
[22]   Data-Driven Distance Metrics for Kriging-Short-Term Urban Traffic State Prediction [J].
Varga, Balazs ;
Pereira, Mike ;
Kulcsar, Balazs ;
Pariota, Luigi ;
Peni, Tamas .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) :6268-6279
[23]   Data-driven deep learning prediction of boron-doped graphene work function [J].
Lu, Yunhua ;
Yu, Jintao ;
Zhang, Qingwei ;
Zhang, Junan ;
Zhang, Chao ;
Bi, Qiuyan .
MATERIALS TODAY COMMUNICATIONS, 2024, 40
[24]   Data-driven deep learning prediction of full molecular weight distribution in polymerization processes [J].
Mora-Mariano, Dante ;
Flores-Tlacuahuac, Antonio ;
Zapata-Gonzalez, Ivan ;
Saldivar-Guerra, Enrique .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
[25]   Monthly Arctic sea ice prediction based on a data-driven deep learning model [J].
Huan, Xiaohe ;
Wang, Jielong ;
Liu, Zhongfang .
ENVIRONMENTAL RESEARCH COMMUNICATIONS, 2023, 5 (10)
[26]   Novel Data-Driven Deep Learning Assisted CVA for Ironmaking System Prediction and Control [J].
Lou, Siwei ;
Yang, Chunjie ;
Zhang, Xujie ;
Wu, Ping .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (12) :4544-4548
[27]   A data-driven prediction for concrete crack propagation path based on deep learning method [J].
Lei, Jiawei ;
Xu, Chengkan ;
Liu, Chaofeng ;
Feng, Qian ;
Zhang, He .
CASE STUDIES IN CONSTRUCTION MATERIALS, 2024, 21
[28]   Data repairing and resolution enhancement using data-driven modal decomposition and deep learning [J].
Hetherington, Ashton ;
Serfaty, Daniel ;
Corrochano, Adrian ;
Soria, Julio ;
Le Clainche, Soledad .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2024, 157
[29]   Learning QoE of Mobile Video Transmission With Deep Neural Network: A Data-Driven Approach [J].
Tao, Xiaoming ;
Duan, Yiping ;
Xu, Mai ;
Meng, Zhishen ;
Lu, Jianhua .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (06) :1337-1348
[30]   Modelling of Destinations for Data-driven Pedestrian Trajectory Prediction in Public Buildings [J].
Lui, Andrew Kwok-Fai ;
Chan, Yin-Hei ;
Leung, Man-Fai .
2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, :1709-1717