Regression applied to symbolic interval-spatial data

被引:1
作者
Freitas, Wanessa W. L. [1 ]
de Souza, Renata M. C. R. [1 ]
Amaral, Getulio J. A. [2 ]
de Moraes, Ronei M. [3 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Pernambuco, Dept Estat, Ave Jornalista Anibal Fernandes S-N,Cidade Univ, BR-50740560 Recife, PE, Brazil
[3] Univ Fed Paraiba, Dept Estat, BR-58050585 Joao Pessoa, PB, Brazil
关键词
Symbolic data analysis; Interval data; Spatial analysis; Regression; MODEL;
D O I
10.1007/s10489-023-05051-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symbolic data analysis is a research area related to machine learning and statistics, which provides tools to describe geo-objects, and enables several types of variables to be dealt with, including interval type variables. Moreover, despite the recent progress in understanding symbolic data, there are no studies in the literature that address this type of data in the context of spatial data analysis. Thus, in this paper, we propose two different approaches of the spatial regression model for symbolic interval-valued data. The first fits a linear regression model on the minimum and maximum values of the interval values and the second fits a linear regression model on the center and range values of the interval. In order to evaluate the performance of these approaches, we have performed Monte Carlo simulations in which we calculated the mean value of the performance metric of the models analyzed. Furthermore, we also analyzed two applications involving real data. In the first, we examined the performance of the models in the Brazilian State of Pernambuco. In the second application, we analyzed the performance of the models for the Brazilian Northeastern region. Both applications were related to socioeconomic variables. We observed that in areas with less spatial variability, the interval spatial regression model performs better when compared with a usual method. When considering areas with a higher spatial variability, both ways presented similar results.
引用
收藏
页码:1545 / 1565
页数:21
相关论文
共 50 条
  • [41] Confidence sets in a linear regression model for interval data
    Blanco-Fernandez, Angela
    Colubi, Ana
    Gonzalez-Rodriguez, Gil
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (06) : 1320 - 1329
  • [42] Two optimization problems in linear regression with interval data
    Hladik, M.
    Cerny, M.
    OPTIMIZATION, 2017, 66 (03) : 331 - 349
  • [43] Compositional Linear Regression on Interval-valued Data
    Pekaslan, Direnc
    Wagner, Christian
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [44] Fuzzy c-means clustering methods for symbolic interval data
    de Carvalho, Francisco de A. T.
    PATTERN RECOGNITION LETTERS, 2007, 28 (04) : 423 - 437
  • [45] Extreme learning machine based pattern classifiers for symbolic interval data
    Emami N.
    Kuchaki Rafsanjani M.
    International Journal of Engineering, Transactions B: Applications, 2021, 34 (11): : 2545 - 2556
  • [46] Spatial analysis for interval-valued data
    Workman, Austin
    Song, Joon Jin
    JOURNAL OF APPLIED STATISTICS, 2023,
  • [47] Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series
    de Carvalho, Miguel
    Martos, Gabriel
    JOURNAL OF FORECASTING, 2022, 41 (01) : 167 - 180
  • [48] Multiview Symbolic Regression
    Russeil, Etienne
    de Franca, Fabricio Olivetti
    Malanchev, Konstantin
    Burlacu, Bogdan
    Ishida, Emille E. O.
    Leroux, Marion
    Michelin, Clement
    Moinard, Guillaume
    Gangler, Emmanuel
    PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024, 2024, : 961 - 970
  • [49] Extension of multivariate regression trees to interval data. Application to electricity load profiling
    Cariou, Veronique
    COMPUTATIONAL STATISTICS, 2006, 21 (02) : 325 - 341
  • [50] Extension of multivariate regression trees to interval data. Application to electricity load profiling
    Véronique Cariou
    Computational Statistics, 2006, 21 : 325 - 341