Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas

被引:1
作者
Huo, Xulei [1 ]
Wang, Yali [2 ]
Ma, Sihan [1 ]
Zhu, Sipeng [1 ]
Wang, Ke [1 ]
Ji, Qiang [2 ]
Chen, Feng [2 ]
Wang, Liang [1 ]
Wu, Zhen [1 ]
Li, Wenbin [2 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing 100070, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Canc Ctr, Dept Neurooncol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
glioma; IDH wildtype; nomogram; radiomic; TERTp mutation; FEATURES; CLASSIFICATION; HETEROGENEITY; GLIOBLASTOMA; EXPRESSION; SURVIVAL; SYSTEM; LEVEL;
D O I
10.1097/MD.0000000000036581
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The presence of TERTp mutation in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade glioma (LGA) has been linked to a poor prognosis. In this study, we aimed to develop and validate a radiomic nomogram based on multimodal MRI for predicting TERTp mutations in IDHwt LGA. One hundred and nine IDH wildtype glioma patients (TERTp-mutant, 78; TERTp-wildtype, 31) with clinical, radiomic, and molecular information were collected and randomly divided into training and validation set. Clinical model, fusion radiomic model, and combined radiomic nomogram were constructed for the discrimination. Radiomic features were screened with 3 algorithms (Wilcoxon rank sum test, elastic net, and the recursive feature elimination) and the clinical characteristics of combined radiomic nomogram were screened by the Akaike information criterion. Finally, receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis were utilized to assess these models. Fusion radiomic model with 4 radiomic features achieved an area under the curve value of 0.876 and 0.845 in the training and validation set. And, the combined radiomic nomogram achieved area under the curve value of 0.897 (training set) and 0.882 (validation set). Above that, calibration curve and Hosmer-Lemeshow test showed that the radiomic model and combined radiomic nomogram had good agreement between observations and predictions in the training set and the validation set. Finally, the decision curve analysis revealed that the 2 models had good clinical usefulness for the prediction of TERTp mutation status in IDHwt LGA. The combined radiomics nomogram performed great performance and high sensitivity in prediction of TERTp mutation status in IDHwt LGA, and has good clinical application.
引用
收藏
页数:11
相关论文
共 32 条
[21]   Fabrication of Concentrated Palm Olein-Based Diacylglycerol Oil-Soybean Oil Blend Oil-In-Water Emulsion: In-Depth Study of the Rheological Properties and Storage Stability [J].
Ng, Siou Pei ;
Khor, Yih Phing ;
Lim, Hong Kwong ;
Lai, Oi Ming ;
Wang, Yong ;
Wang, Yonghua ;
Cheong, Ling Zhi ;
Nehdi, Imededdine Arbi ;
Mansour, Lamjed ;
Tan, Chin Ping .
FOODS, 2020, 9 (07)
[22]   Texture Analysis of Supraspinatus Ultrasound Image for Computer Aided Diagnostic System [J].
Park, Byung Eun ;
Jang, Won Seuk ;
Yoo, Sun Kook .
HEALTHCARE INFORMATICS RESEARCH, 2016, 22 (04) :299-304
[23]   MRI Features May Predict Molecular Features of Glioblastoma in Isocitrate Dehydrogenase Wild-Type Lower-Grade Gliomas [J].
Park, C. J. ;
Han, K. ;
Kim, H. ;
Ahn, S. S. ;
Choi, D. ;
Park, Y. W. ;
Chang, J. H. ;
Kim, S. H. ;
Cha, S. ;
Lee, S-K .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (03) :448-456
[24]   The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer [J].
Qu, Jinrong ;
Shen, Chen ;
Qin, Jianjun ;
Wang, Zhaoqi ;
Liu, Zhenyu ;
Guo, Jia ;
Zhang, Hongkai ;
Gao, Pengrui ;
Bei, Tianxia ;
Wang, Yingshu ;
Liu, Hui ;
Kamel, Ihab R. ;
Tian, Jie ;
Li, Hailiang .
EUROPEAN RADIOLOGY, 2019, 29 (02) :906-914
[25]   Imaging Glioblastoma Posttreatment Progression, Pseudoprogression, Pseudoresponse, Radiation Necrosis [J].
Strauss, Sara B. ;
Meng, Alicia ;
Ebani, Edward J. ;
Chiang, Gloria C. .
NEUROIMAGING CLINICS OF NORTH AMERICA, 2021, 31 (01) :103-120
[26]   Improving survival prediction of high-grade glioma via machine learning techniques based on MRI radiomic, genetic and clinical risk factors [J].
Tan, Yan ;
Mu, Wei ;
Wang, Xiao-chun ;
Yang, Guo-qiang ;
Gillies, Robert James ;
Zhang, Hui .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 120
[27]   Survival of diffuse astrocytic glioma, IDH1/2 wildtype, with molecular features of glioblastoma, WHO grade IV: a confirmation of the cIMPACT-NOW criteria [J].
Tesileanu, C. Mircea S. ;
Dirven, Linda ;
Wijnenga, Maarten M. J. ;
Koekkoek, Johan A. F. ;
Vincent, Arnaud J. P. E. ;
Dubbink, Hendrikus J. ;
Atmodimedjo, Peggy N. ;
Kros, Johan M. ;
van Duinen, Sjoerd G. ;
Smits, Marion ;
Taphoorn, Martin J. B. ;
French, Pim J. ;
van den Bent, Martin J. .
NEURO-ONCOLOGY, 2020, 22 (04) :515-523
[28]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107
[29]   Molecular and clinical heterogeneity of adult diffuse low-grade IDH wild-type gliomas: assessment of TERT promoter mutation and chromosome 7 and 10 copy number status allows superior prognostic stratification [J].
Wijnenga, Maarten M. J. ;
Dubbink, Hendrikus J. ;
French, Pim J. ;
Synhaeve, Nathalie E. ;
Dinjens, Winand N. M. ;
Atmodimedjo, Peggy N. ;
Kros, Johan M. ;
Dirven, Clemens M. F. ;
Vincent, Arnaud J. P. E. ;
van den Bent, Martin J. .
ACTA NEUROPATHOLOGICA, 2017, 134 (06) :957-959
[30]   Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients [J].
Yan, Jing ;
Zhang, Bin ;
Zhang, Shuaitong ;
Cheng, Jingliang ;
Liu, Xianzhi ;
Wang, Weiwei ;
Dong, Yuhao ;
Zhang, Lu ;
Mo, Xiaokai ;
Chen, Qiuying ;
Fang, Jin ;
Wang, Fei ;
Tian, Jie ;
Zhang, Shuixing ;
Zhang, Zhenyu .
NPJ PRECISION ONCOLOGY, 2021, 5 (01)