Multimodal MRI-based radiomic nomogram for predicting telomerase reverse transcriptase promoter mutation in IDH-wildtype histological lower-grade gliomas

被引:1
作者
Huo, Xulei [1 ]
Wang, Yali [2 ]
Ma, Sihan [1 ]
Zhu, Sipeng [1 ]
Wang, Ke [1 ]
Ji, Qiang [2 ]
Chen, Feng [2 ]
Wang, Liang [1 ]
Wu, Zhen [1 ]
Li, Wenbin [2 ]
机构
[1] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing 100070, Peoples R China
[2] Capital Med Univ, Beijing Tiantan Hosp, Canc Ctr, Dept Neurooncol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
glioma; IDH wildtype; nomogram; radiomic; TERTp mutation; FEATURES; CLASSIFICATION; HETEROGENEITY; GLIOBLASTOMA; EXPRESSION; SURVIVAL; SYSTEM; LEVEL;
D O I
10.1097/MD.0000000000036581
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The presence of TERTp mutation in isocitrate dehydrogenase-wildtype (IDHwt) histologically lower-grade glioma (LGA) has been linked to a poor prognosis. In this study, we aimed to develop and validate a radiomic nomogram based on multimodal MRI for predicting TERTp mutations in IDHwt LGA. One hundred and nine IDH wildtype glioma patients (TERTp-mutant, 78; TERTp-wildtype, 31) with clinical, radiomic, and molecular information were collected and randomly divided into training and validation set. Clinical model, fusion radiomic model, and combined radiomic nomogram were constructed for the discrimination. Radiomic features were screened with 3 algorithms (Wilcoxon rank sum test, elastic net, and the recursive feature elimination) and the clinical characteristics of combined radiomic nomogram were screened by the Akaike information criterion. Finally, receiver operating characteristic curve, calibration curve, Hosmer-Lemeshow test, and decision curve analysis were utilized to assess these models. Fusion radiomic model with 4 radiomic features achieved an area under the curve value of 0.876 and 0.845 in the training and validation set. And, the combined radiomic nomogram achieved area under the curve value of 0.897 (training set) and 0.882 (validation set). Above that, calibration curve and Hosmer-Lemeshow test showed that the radiomic model and combined radiomic nomogram had good agreement between observations and predictions in the training set and the validation set. Finally, the decision curve analysis revealed that the 2 models had good clinical usefulness for the prediction of TERTp mutation status in IDHwt LGA. The combined radiomics nomogram performed great performance and high sensitivity in prediction of TERTp mutation status in IDHwt LGA, and has good clinical application.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Adult IDH wild-type lower-grade gliomas should be further stratified [J].
Aibaidula, Abudumijit ;
Chan, Aden Ka-Yin ;
Shi, Zhifeng ;
Li, Yanxi ;
Zhang, Ruiqi ;
Yang, Rui ;
Li, Kay Ka-Wai ;
Chung, Nellie Yuk-Fei ;
Yao, Yu ;
Zhou, Liangfu ;
Wu, Jinsong ;
Chen, Hong ;
Ng, Ho-Keung .
NEURO-ONCOLOGY, 2017, 19 (10) :1327-1337
[2]   Financially effective test algorithm to identify an aggressive, EGFR-amplified variant of IDH-wildtype, lower-grade diffuse glioma [J].
Bale, Tejus A. ;
Jordan, Justin T. ;
Rapalino, Otto ;
Ramamurthy, Nisha ;
Jessop, Nicholas ;
DeWitt, John C. ;
Nardi, Valentina ;
Alvarez, Maria Martinez-Lage ;
Frosch, Matthew ;
Batchelor, Tracy T. ;
Louis, David N. ;
Iafrate, A. John ;
Cahill, Daniel P. ;
Lennerz, Jochen K. .
NEURO-ONCOLOGY, 2019, 21 (05) :596-605
[3]   Evolving Role of Catheter Ablation for Atrial Fibrillation: Early and Effective Rhythm Control [J].
Chen, Shaojie ;
Yin, Yuehui ;
Ling, Zhiyu ;
Meyer, Christian ;
Puererfellner, Helmut ;
Martinek, Martin ;
Kiuchi, Marcio Galindo ;
Futyma, Piotr ;
Zhu, Lin ;
Schratter, Alexandra ;
Wang, Jiazhi ;
Acou, Willem-Jan ;
Sommer, Philipp ;
Ouyang, Feifan ;
Liu, Shaowen ;
Chun, Julian K. R. ;
Schmidt, Boris .
JOURNAL OF CLINICAL MEDICINE, 2022, 11 (22)
[4]   Non-Invasive Preoperative Imaging Differential Diagnosis of Intracranial Hemangiopericytoma and Angiomatous Meningioma: A Novel Developed and Validated Multiparametric MRI-Based Clini-Radiomic Model [J].
Fan, Yanghua ;
Liu, Panpan ;
Li, Yiping ;
Liu, Feng ;
He, Yu ;
Wang, Liang ;
Zhang, Junting ;
Wu, Zhen .
FRONTIERS IN ONCOLOGY, 2022, 11
[5]   Non-invasive preoperative imaging differential diagnosis of pineal region tumor: A novel developed and validated multiparametric MRI-based clinicoradiomic model [J].
Fan, Yanghua ;
Huo, Xulei ;
Li, Xiaojie ;
Wang, Liang ;
Wu, Zhen .
RADIOTHERAPY AND ONCOLOGY, 2022, 167 :277-284
[6]   TERT promoter mutation status is necessary and sufficient to diagnose IDH-wildtype diffuse astrocytic glioma with molecular features of glioblastoma [J].
Fujimoto, Kenji ;
Arita, Hideyuki ;
Satomi, Kaishi ;
Yamasaki, Kai ;
Matsushita, Yuko ;
Nakamura, Taishi ;
Miyakita, Yasuji ;
Umehara, Toru ;
Kobayashi, Keiichi ;
Tamura, Kaoru ;
Tanaka, Shota ;
Higuchi, Fumi ;
Okita, Yoshiko ;
Kanemura, Yonehiro ;
Fukai, Junya ;
Sakamoto, Daisuke ;
Uda, Takehiro ;
Machida, Ryunosuke ;
Kuchiba, Aya ;
Maehara, Taketoshi ;
Nagane, Motoo ;
Nishikawa, Ryo ;
Suzuki, Hiroyoshi ;
Shibuya, Makoto ;
Komori, Takashi ;
Narita, Yoshitaka ;
Ichimura, Koichi .
ACTA NEUROPATHOLOGICA, 2021, 142 (02) :323-338
[7]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[8]   Support vector machines [J].
Hearst, MA .
IEEE INTELLIGENT SYSTEMS & THEIR APPLICATIONS, 1998, 13 (04) :18-21
[9]   RETRACTED: Multimodal MRI-Based Radiomic Nomogram for the Early Differentiation of Recurrence and Pseudoprogression of High-Grade Glioma (Retracted Article) [J].
Jing, Hui ;
Yang, Fan ;
Peng, Kun ;
Qin, Danlei ;
He, Yexin ;
Yang, Guoqiang ;
Zhang, Hui .
BIOMED RESEARCH INTERNATIONAL, 2022, 2022
[10]   Predicting IDH subtype of grade 4 astrocytoma and glioblastoma from tumor radiomic patterns extracted from multiparametric magnetic resonance images using a machine learning approach [J].
Kandalgaonkar, Pashmina ;
Sahu, Arpita ;
Saju, Ann Christy ;
Joshi, Akanksha ;
Mahajan, Abhishek ;
Thakur, Meenakshi ;
Sahay, Ayushi ;
Epari, Sridhar ;
Sinha, Shwetabh ;
Dasgupta, Archya ;
Chatterjee, Abhishek ;
Shetty, Prakash ;
Moiyadi, Aliasgar ;
Agarwal, Jaiprakash ;
Gupta, Tejpal ;
Goda, Jayant S. .
FRONTIERS IN ONCOLOGY, 2022, 12