Lower-temperature sintered high energy density fine-grained sodium bismuth titanate - strontium bismuth titanate ceramics multilayer capacitors

被引:4
|
作者
Wang, Jingbo [1 ]
Fan, Huiqing [1 ]
Jia, Yuxin [1 ]
Wang, Weijia [1 ]
机构
[1] Northwestern Polytech Univ, Sch Mat Sci & Engn, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
关键词
Ceramic capacitors; Energy-storage; Sodium bismuth titanate; Strontium bismuth titanate; Breakdown strength; Sintering; STORAGE PROPERTIES; BREAKDOWN; SIZE; DEPENDENCE; STABILITY;
D O I
10.1016/j.ceramint.2023.10.170
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The breakdown field strongly determines the energy density of energy-storage ceramic capacitors. In this work, a compound sintering aid of CuO and SiO2 was preferably selected to explore the effect on sintering behavior and energy storage of sodium bismuth titanate - strontium bismuth titanate (NBT-SBT) relaxor ferroelectrics. The optimum sintering temperature promotes a dense microstructure and fined-grain size in NBT-SBT, which contributes to an increase in breakdown strength. Meanwhile, the appropriate CuO/SiO2 ratio retains the advantages of the high polarization value of NBT-SBT. Specifically, when sintered at 1040 degrees C with 0.2 wt% SiO2 and 0.8 wt% CuO composite sintering aids, the NBT-SBT bulk ceramics achieved an energy storage density of 4.09 J/cm3 under a high electric field of 270 kV/cm. Owing to the lower sintering temperature, the NBT-SBT achieved cofiring with 30/70 Ag/Pd electrodes. Finally, multilayer ceramic capacitors with a recoverable energy density of 8.43 J/cm3 have been successfully fabricated.
引用
收藏
页码:857 / 864
页数:8
相关论文
共 50 条
  • [1] Temperature hysteresis in sodium bismuth titanate ceramics
    Zhao, M.L.
    Wang, C.L.
    Zhong, W.L.
    Zhang, P.L.
    Yadian Yu Shengguang/Piezoelectrics and Acoustooptics, 2001, 23 (03):
  • [2] Effects of processing parameter on energy storage density and ferroelectric properties of lead-free bismuth sodium titanate-strontium bismuth titanate ceramics
    Saenkam, Kamonporn
    Jaita, Pharatree
    Sirisoonthorn, Somnuk
    Tunkasiri, Tawee
    Rujijangul, Gobwute
    SCIENCEASIA, 2021, 47 : 34 - 41
  • [3] High Temperature Sodium Bismuth Titanate Capacitors - A New Product Realized
    Bridger, Keith
    Cooke, Arthur
    Schulze, Walter
    Weigner, James
    Sentz, Scott
    Stewart, Mike
    Duva, Frank
    SAE INTERNATIONAL JOURNAL OF AEROSPACE, 2009, 1 (01): : 876 - 882
  • [4] Fine-grained silica-coated barium strontium titanate ceramics with high energy storage
    Liu, Miao
    Cao, Minghe
    Zeng, Fanzhou
    Qi, Junlei
    Liu, Hanxing
    Hao, Hua
    Yao, Zhonghua
    CERAMICS INTERNATIONAL, 2018, 44 (16) : 20239 - 20244
  • [5] Application of High Permittivity Bismuth Copper Titanate in Multilayer Capacitors
    Szwagierczak, D.
    Kulawik, J.
    ACTA PHYSICA POLONICA A, 2012, 121 (01) : 119 - 121
  • [6] Fine grained bismuth sodium titanate ceramics prepared via vibro-milling method
    O. Khamman
    A. Watcharapasorn
    K. Pengpat
    T. Tunkasiri
    Journal of Materials Science, 2006, 41 : 5391 - 5394
  • [7] Fine grained bismuth sodium titanate ceramics prepared via vibro-milling method
    Khamman, O.
    Watcharapasorn, A.
    Pengpat, K.
    Tunkasiri, T.
    JOURNAL OF MATERIALS SCIENCE, 2006, 41 (16) : 5391 - 5394
  • [8] Bismuth sodium titanate-barium titanate-barium zirconate titanate relaxor ferroelectric ceramics with high recoverable energy storage density
    Chen, Yanqin
    Fan, Huiqing
    Hou, Dingwei
    Jia, Yuxin
    Zhang, Ao
    Wang, Weijia
    CERAMICS INTERNATIONAL, 2022, 48 (18) : 26894 - 26903
  • [9] Glass-ceramics of barium strontium titanate for high energy density capacitors
    Gorzkowski, E. P.
    Pan, M.-J.
    Bender, B.
    Wu, C. C. M.
    JOURNAL OF ELECTROCERAMICS, 2007, 18 (3-4) : 269 - 276
  • [10] New higher temperature and high performance barium titanate and sodium bismuth titanate based piezoelectric ceramics
    Mahboob, Syed
    Rizwana
    Prasad, G.
    Kumar, G. S.
    FERROELECTRICS, 2020, 554 (01) : 150 - 159