On constraint qualifications and optimality conditions for robust optimization problems through pseudo-differential

被引:0
作者
Hejazi, Mansoureh Alavi [1 ]
Movahedian, Nooshin [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Univ Isfahan, Dept Appl Math & Comp Sci, POB 81745-163, Esfahan, Iran
关键词
Nonsmooth analysis; Pseudo-Jacobian; Pseudo-differential; Constraint qualification; Necessary optimality condition; Robust optimization problems; DUALITY;
D O I
10.1007/s11590-023-02078-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a nonsmooth nonconvex robust optimization problem is considered. Using the idea of pseudo-differential, nonsmooth versions of the Robinson, Mangasarian-Fromovitz and Abadie constraint qualifications are introduced and their relations with the existence of a local error bound are investigated. Based on the pseudo-differential notion, new necessary optimality conditions are derived under the Abadie constraint qualification. Moreover, an example is provided to clarify the results.
引用
收藏
页码:705 / 726
页数:22
相关论文
共 50 条
[21]   Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds [J].
Upadhyay, Balendu Bhooshan ;
Ghosh, Arnav ;
Treanta, Savin .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (02) :794-819
[22]   Scaled constraint qualifications and necessary optimality conditions for nonsmooth mathematical programs with second-order cone complementarity constraints [J].
A. Hajheidari ;
N. Movahedian .
Positivity, 2022, 26
[23]   Scaled constraint qualifications and necessary optimality conditions for nonsmooth mathematical programs with second-order cone complementarity constraints [J].
Hajheidari, A. ;
Movahedian, N. .
POSITIVITY, 2022, 26 (01)
[24]   Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs [J].
Mordukhovich, B. ;
Nghia, T. T. A. .
MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) :271-300
[25]   Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems [J].
Giorgi, G. ;
Jimenez, B. ;
Novo, V. .
TOP, 2009, 17 (02) :288-304
[26]   IMAGE SPACE ANALYSIS FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS: ROBUST OPTIMALITY CONDITIONS [J].
Ou, Xiaoqing ;
Al-Homidan, Suliman ;
Ansari, Qamrul Hasan ;
Chen, Jiawei .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) :629-644
[27]   On approximate optimality conditions for robust mufti-objective convex optimization problems [J].
Wu, Pengcheng ;
Jiao, Liguo ;
Zhou, Yuying .
OPTIMIZATION, 2023, 72 (08) :1995-2018
[28]   ROBUST OPTIMALITY CONDITIONS FOR MULTI-CRITERIA OPTIMIZATION PROBLEMS WITH UNCERTAIN DATA [J].
Ou, X. ;
Lv, Y. B. ;
Liou, Y. C. ;
Zhang, T. ;
Chen, J. W. .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (08) :1455-1463
[29]   Optimality Conditions for Vector Optimization Problems [J].
Huang, N. J. ;
Li, J. ;
Wu, S. Y. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) :323-342
[30]   Optimality conditions of robust convex multiobjective optimization via ε-constraint scalarization and image space analysis [J].
Chen, Jiawei ;
Huang, La ;
Lv, Yibing ;
Wen, Ching-Feng .
OPTIMIZATION, 2020, 69 (09) :1849-1879