On constraint qualifications and optimality conditions for robust optimization problems through pseudo-differential

被引:0
作者
Hejazi, Mansoureh Alavi [1 ]
Movahedian, Nooshin [2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Univ Isfahan, Dept Appl Math & Comp Sci, POB 81745-163, Esfahan, Iran
关键词
Nonsmooth analysis; Pseudo-Jacobian; Pseudo-differential; Constraint qualification; Necessary optimality condition; Robust optimization problems; DUALITY;
D O I
10.1007/s11590-023-02078-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a nonsmooth nonconvex robust optimization problem is considered. Using the idea of pseudo-differential, nonsmooth versions of the Robinson, Mangasarian-Fromovitz and Abadie constraint qualifications are introduced and their relations with the existence of a local error bound are investigated. Based on the pseudo-differential notion, new necessary optimality conditions are derived under the Abadie constraint qualification. Moreover, an example is provided to clarify the results.
引用
收藏
页码:705 / 726
页数:22
相关论文
共 50 条
  • [21] Constraint Qualifications and Optimality Criteria for Nonsmooth Multiobjective Programming Problems on Hadamard Manifolds
    Upadhyay, Balendu Bhooshan
    Ghosh, Arnav
    Treanta, Savin
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 200 (02) : 794 - 819
  • [22] Scaled constraint qualifications and necessary optimality conditions for nonsmooth mathematical programs with second-order cone complementarity constraints
    A. Hajheidari
    N. Movahedian
    Positivity, 2022, 26
  • [23] Scaled constraint qualifications and necessary optimality conditions for nonsmooth mathematical programs with second-order cone complementarity constraints
    Hajheidari, A.
    Movahedian, N.
    POSITIVITY, 2022, 26 (01)
  • [24] Constraint qualifications and optimality conditions for nonconvex semi-infinite and infinite programs
    Mordukhovich, B.
    Nghia, T. T. A.
    MATHEMATICAL PROGRAMMING, 2013, 139 (1-2) : 271 - 300
  • [25] Strong Kuhn-Tucker conditions and constraint qualifications in locally Lipschitz multiobjective optimization problems
    Giorgi, G.
    Jimenez, B.
    Novo, V.
    TOP, 2009, 17 (02) : 288 - 304
  • [26] IMAGE SPACE ANALYSIS FOR UNCERTAIN MULTIOBJECTIVE OPTIMIZATION PROBLEMS: ROBUST OPTIMALITY CONDITIONS
    Ou, Xiaoqing
    Al-Homidan, Suliman
    Ansari, Qamrul Hasan
    Chen, Jiawei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (01) : 629 - 644
  • [27] On approximate optimality conditions for robust mufti-objective convex optimization problems
    Wu, Pengcheng
    Jiao, Liguo
    Zhou, Yuying
    OPTIMIZATION, 2023, 72 (08) : 1995 - 2018
  • [28] ROBUST OPTIMALITY CONDITIONS FOR MULTI-CRITERIA OPTIMIZATION PROBLEMS WITH UNCERTAIN DATA
    Ou, X.
    Lv, Y. B.
    Liou, Y. C.
    Zhang, T.
    Chen, J. W.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (08) : 1455 - 1463
  • [29] Optimality Conditions for Vector Optimization Problems
    Huang, N. J.
    Li, J.
    Wu, S. Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 142 (02) : 323 - 342
  • [30] Optimality conditions of robust convex multiobjective optimization via ε-constraint scalarization and image space analysis
    Chen, Jiawei
    Huang, La
    Lv, Yibing
    Wen, Ching-Feng
    OPTIMIZATION, 2020, 69 (09) : 1849 - 1879