Predicting the Radiation Field of Molecular Clouds Using Denoising Diffusion Probabilistic Models

被引:1
作者
Xu, Duo [1 ]
Offner, Stella S. R. [2 ]
Gutermuth, Robert [3 ]
Grudic, Michael Y. [4 ]
Guszejnov, David [5 ]
Hopkins, Philip F. [6 ]
机构
[1] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA
[2] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA
[3] Univ Massachusetts, Dept Astron, Amherst, MA 01003 USA
[4] Carnegie Observ, 813 Santa Barbara St, Pasadena, CA 91101 USA
[5] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[6] CALTECH, TAPIR, Mailcode 350-17, Pasadena, CA 91125 USA
关键词
CONVOLUTIONAL NEURAL-NETWORKS; SPECTRAL ENERGY-DISTRIBUTIONS; MASSIVE STAR-FORMATION; PROTOSTELLAR OUTFLOWS; STELLAR FEEDBACK; MAGNETIC-FIELDS; IONIZING FEEDBACK; SIMULATION; DUST; INSTRUMENT;
D O I
10.3847/1538-4357/acfedc
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accurately quantifying the impact of radiation feedback in star formation is challenging. To address this complex problem, we employ deep-learning techniques known as denoising diffusion probabilistic models (DDPMs) to predict the interstellar radiation field (ISRF) strength based on three-band dust emission at 4.5, 24, and 250 mu m. We adopt magnetohydrodynamic simulations from the STARFORGE project that model star formation and giant molecular cloud (GMC) evolution. We generate synthetic dust emission maps matching observed spectral energy distributions in the Monoceros R2 (MonR2) GMC. We train DDPMs to estimate the ISRF using synthetic three-band dust emission. The dispersion between the predictions and true values is within a factor of 0.1 for the test set. We extended our assessment of the diffusion model to include new simulations with varying physical parameters. While there is a consistent offset observed in these out-of-distribution simulations, the model effectively constrains the relative intensity to within a factor of 2. Meanwhile, our analysis reveals a weak correlation between the ISRF solely derived from dust temperature and the actual ISRF. We apply our trained model to predict the ISRF in MonR2, revealing a correspondence between intense ISRF, bright sources, and high dust emission, confirming the model's ability to capture ISRF variations. Our model robustly predicts radiation feedback distribution, even in complex, poorly constrained ISRF environments like those influenced by nearby star clusters. However, precise ISRF predictions require an accurate training data set mirroring the target molecular cloud's unique physical conditions.
引用
收藏
页数:19
相关论文
共 68 条
[1]   Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance [J].
Ade, P. A. R. ;
Aghanim, N. ;
Ansari, R. ;
Arnaud, M. ;
Ashdown, M. ;
Aumont, J. ;
Banday, A. J. ;
Bartelmann, M. ;
Bartlett, J. G. ;
Battaner, E. ;
Benabed, K. ;
Benoit, A. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bhatia, R. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bradshaw, T. ;
Breelle, E. ;
Bucher, M. ;
Camus, P. ;
Cardoso, J. -F. ;
Catalano, A. ;
Challinor, A. ;
Chamballu, A. ;
Charra, J. ;
Charra, M. ;
Chary, R. -R. ;
Chiang, C. ;
Church, S. ;
Clements, D. L. ;
Colombi, S. ;
Couchot, F. ;
Coulais, A. ;
Cressiot, C. ;
Crill, B. P. ;
Crook, M. ;
de Bernardis, P. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Desert, F. -X. ;
Dolag, K. ;
Dole, H. ;
Dore, O. ;
Douspis, M. ;
Efstathiou, G. ;
Eng, P. .
ASTRONOMY & ASTROPHYSICS, 2011, 536
[2]  
Arce H. G., 2007, PROTOSTARS PLANETS, P245
[3]   Stokes inversion based on convolutional neural networks [J].
Asensio Ramos, A. ;
Baso, C. J. Diaz .
ASTRONOMY & ASTROPHYSICS, 2019, 626
[4]   Dust temperature tracing the ISRF intensity in the Galaxy [J].
Bernard, J. -Ph. ;
Paradis, D. ;
Marshall, D. J. ;
Montier, L. ;
Lagache, G. ;
Paladini, R. ;
Veneziani, M. ;
Brunt, C. M. ;
Mottram, J. C. ;
Martin, P. ;
Ristorcelli, I. ;
Noriega-Crespo, A. ;
Compiegne, M. ;
Flagey, N. ;
Anderson, L. D. ;
Popescu, C. C. ;
Tuffs, R. ;
Reach, W. ;
White, G. ;
Benedetti, M. ;
Calzoletti, L. ;
DiGiorgio, A. M. ;
Faustini, F. ;
Juvela, M. ;
Joblin, C. ;
Joncas, G. ;
Mivilles-Deschenes, M. -A. ;
Olmi, L. ;
Traficante, A. ;
Piacentini, F. ;
Zavagno, A. ;
Molinari, S. .
ASTRONOMY & ASTROPHYSICS, 2010, 518
[5]   3d-pdr: a new three-dimensional astrochemistry code for treating photodissociation regions [J].
Bisbas, T. G. ;
Bell, T. A. ;
Viti, S. ;
Yates, J. ;
Barlow, M. J. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 427 (03) :2100-2118
[6]   The bubbling galactic disk.: II. The inner 20° [J].
Churchwell, E. ;
Watson, D. F. ;
Povich, M. S. ;
Taylor, M. G. ;
Babler, B. L. ;
Meade, M. R. ;
Benjamin, R. A. ;
Indebetouw, R. ;
Whitney, B. A. .
ASTROPHYSICAL JOURNAL, 2007, 670 (01) :428-441
[7]   A CATALOG OF EXTENDED GREEN OBJECTS IN THE GLIMPSE SURVEY: A NEW SAMPLE OF MASSIVE YOUNG STELLAR OBJECT OUTFLOW CANDIDATES [J].
Cyganowski, C. J. ;
Whitney, B. A. ;
Holden, E. ;
Braden, E. ;
Brogan, C. L. ;
Churchwell, E. ;
Indebetouw, R. ;
Watson, D. F. ;
Babler, B. L. ;
Benjamin, R. ;
Gomez, M. ;
Meade, M. R. ;
Povich, M. S. ;
Robitaille, T. P. ;
Watson, C. .
ASTRONOMICAL JOURNAL, 2008, 136 (06) :2391-2412
[8]   Ionizing feedback from massive stars in massive clusters - III. Disruption of partially unbound clouds [J].
Dale, J. E. ;
Ercolano, B. ;
Bonnell, I. A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 430 (01) :234-246
[9]   Ionizing feedback from massive stars in massive clusters - II. Disruption of bound clusters by photoionization [J].
Dale, J. E. ;
Ercolano, B. ;
Bonnell, I. A. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (01) :377-392
[10]   PHOTO-ELECTRIC HEATING OF INTER-STELLAR GAS [J].
DRAINE, BT .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1978, 36 (04) :595-619