Self-paced ensemble and big data identification: a classification of substantial imbalance computational analysis

被引:0
|
作者
Bano, Shahzadi [1 ]
Zhi, Weimei [1 ]
Qiu, Baozhi [1 ]
Raza, Muhammad [2 ]
Sehito, Nabila [3 ]
Kamal, Mian Muhammad [4 ]
Aldehim, Ghadah [5 ]
Alruwais, Nuha [6 ]
机构
[1] Zhengzhou Univ, Sch Comp & Artificial Intelligence, 100 Sci Ave, Zhengzhou 450001, Peoples R China
[2] Xian Technol Univ, Xian, Peoples R China
[3] Zhengzhou Univ, Sch Elect Informat Engn, 100 Sci Ave, Zhengzhou 450001, Henan, Peoples R China
[4] Southeast Univ, Sch Elect Sci & Engn, Joint Int Res Lab Informat Display & Visualizat, Nanjing 210018, Peoples R China
[5] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 84428, Riyadh 11671, Saudi Arabia
[6] King Saud Univ, Coll Appl Studies & Community Serv, Dept Comp Sci & Engn, POB 22459, Riyadh 11495, Saudi Arabia
关键词
Self-paced ensemble; Big data; Classification; Computational; Simulation; Substantial imbalance;
D O I
10.1007/s11227-023-05828-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This research paper focuses on the challenges associated with learning classifiers from large-scale, highly imbalanced datasets prevalent in many real-world applications. Traditional algorithms learning often need better performance and high computational efficiency when dealing with imbalanced data. Factors such as class imbalance, noise, and class overlap make it demanding to learn effective classifiers. In this study, we propose a novel self-paced ensemble framework for classifying imbalanced data. The framework employs under-sampling to self-harmonize data hardness and build a robust ensemble. Extensive experimental testing demonstrates promising results in handling overlapping classes and skewed distributions while maintaining computational efficiency. The self-paced ensemble method addresses the challenges of high imbalance ratios, class overlap, and noise presence in large-scale imbalanced classification problems. By incorporating the knowledge of these challenges into our learning framework, we establish the concept of classification hardness distribution, and the self-paced ensemble is a revolutionary learning paradigm for massive imbalance categorization, capable of improving the performance of existing learning algorithms on imbalanced data and providing better results for future applications.
引用
收藏
页码:9848 / 9869
页数:22
相关论文
共 50 条
  • [1] Self-paced ensemble and big data identification: a classification of substantial imbalance computational analysis
    Shahzadi Bano
    Weimei Zhi
    Baozhi Qiu
    Muhammad Raza
    Nabila Sehito
    Mian Muhammad Kamal
    Ghadah Aldehim
    Nuha Alruwais
    The Journal of Supercomputing, 2024, 80 : 9848 - 9869
  • [2] Self-paced ensemble for constructing an efficient robust high-performance classification model for detecting mineralization anomalies from geochemical exploration data
    Chen, Yongliang
    Du, Xudong
    Guo, Min
    ORE GEOLOGY REVIEWS, 2023, 157
  • [3] Ensemble Self-Paced Learning Based on Adaptive Mixture Weighting
    Liu, Liwen
    Wang, Zhong
    Bai, Jianbin
    Yang, Xiangfeng
    Yang, Yunchuan
    Zhou, Jianbo
    ELECTRONICS, 2022, 11 (19)
  • [4] Dual Self-Paced SMOTE for Imbalanced Data
    Shao, Yangguang
    Sun, Yingying
    Guan, Hongjiao
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 3083 - 3089
  • [5] Self-Paced Ensemble-SHAP Approach for the Classification and Interpretation of Crash Severity in Work Zone Areas
    Asadi, Roksana
    Khattak, Afaq
    Vashani, Hossein
    Almujibah, Hamad R.
    Rabie, Helia
    Asadi, Seyedamirhossein
    Dimitrijevic, Branislav
    SUSTAINABILITY, 2023, 15 (11)
  • [6] Self-Paced Joint Sparse Representation for the Classification of Hyperspectral Images
    Peng, Jiangtao
    Sun, Weiwei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (02): : 1183 - 1194
  • [7] Extreme Learning Machine for Supervised Classification with Self-paced Learning
    Li, Li
    Zhao, Kaiyi
    Li, Sicong
    Sun, Ruizhi
    Cai, Saihua
    NEURAL PROCESSING LETTERS, 2020, 52 (03) : 1723 - 1744
  • [8] Extreme Learning Machine for Supervised Classification with Self-paced Learning
    Li Li
    Kaiyi Zhao
    Sicong Li
    Ruizhi Sun
    Saihua Cai
    Neural Processing Letters, 2020, 52 : 1723 - 1744
  • [9] Classification of multi-modal data in a self-paced binary BCI in freely moving animals
    Eliseyev, Andrey
    Faber, Jean
    Aksenova, Tatiana
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 7147 - 7150
  • [10] CLASSIFICATION OF POLSAR IMAGES BASED ON SVM WITH SELF-PACED LEARNING OPTIMIZATION
    Chen, Wenshuai
    Hai, Dong
    Gou, Shuiping
    Jiao, Licheng
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4491 - 4494