A two-component nonlinear variational wave system

被引:0
作者
Aursand, Peder [1 ]
Nordli, Anders [2 ]
机构
[1] Aker BP ASA, POB 65,1324, Lysaker, Norway
[2] UiT The Arctic Univ Norway, Engn Sci & Safety, Tromso, Norway
关键词
Nonlinear variational wave equation; Ericksen-Leslie theory; two-component Hunter-Saxton; NEMATIC LIQUID-CRYSTALS; CONSERVATIVE SOLUTIONS; ASYMPTOTIC EQUATION; VARIABLE DEGREE; EXISTENCE; UNIQUENESS;
D O I
10.1142/S0219891623500182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a novel two-component generalization of the nonlinear variational wave equation as a model for the director field of a nematic liquid crystal with a variable order parameter. The equation admits classical solutions locally in time. We prove that a special semilinear case is globally well-posed. We show that a particular long time asymptotic expansion around a constant state in a moving frame satisfies the two-component Hunter-Saxton system.
引用
收藏
页码:603 / 627
页数:25
相关论文
共 34 条
  • [1] Nematic Liquid Crystals: From Maier-Saupe to a Continuum Theory
    Ball, John M.
    Majumdar, Apala
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 525 : 1 - 11
  • [2] Global solutions of the Hunter-Saxton equation
    Bressan, A
    Constantin, A
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) : 996 - 1026
  • [3] Asymptotic variational wave equations
    Bressan, Alberto
    Zhang, Ping
    Zheng, Yuxi
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (01) : 163 - 185
  • [4] Conservative solutions to a nonlinear variational wave equation
    Bressan, Alberto
    Zheng, Yuxi
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 266 (02) : 471 - 497
  • [5] Unique Conservative Solutions to a Variational Wave Equation
    Bressan, Alberto
    Chen, Geng
    Zhang, Qingtian
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) : 1069 - 1101
  • [6] Lipschitz metric for the Hunter-Saxton equation
    Bressan, Alberto
    Holden, Helge
    Raynaud, Xavier
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 68 - 92
  • [7] Time evolution of nematic liquid crystals with variable degree of orientation
    Calderer, MC
    Golovaty, D
    Lin, FH
    Liu, C
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) : 1033 - 1047
  • [8] Liquid crystal flow: Dynamic and static configurations
    Calderer, MC
    Liu, C
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (06) : 1925 - 1949
  • [9] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [10] A Lipschitz metric for the Hunter-Saxton equation
    Carrillo, Jose Antonio
    Grunert, Katrin
    Holden, Helge
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2019, 44 (04) : 309 - 334