ON THE DIOPHANTINE EQUATION x2

被引:0
作者
Alan, Murat [1 ]
Aydin, Mustafa [1 ]
机构
[1] Yildiz Tech Univ, Dept Math, Davutpasa Campus, TR-34210 Istanbul, Esenler, Turkiye
来源
ARCHIVUM MATHEMATICUM | 2023年 / 59卷 / 05期
关键词
diophantine equations; primitive divisor theorem; Ramanujan-Nagell equations; X(2)+2(A);
D O I
10.5817/AM2023-5-411
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all integer solutions (x, y, n, a, b, c) of the equation in the title for non-negative integers a, b and c under the condition that the integers x and y are relatively prime and n >= 3. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.
引用
收藏
页码:411 / 420
页数:10
相关论文
共 22 条
  • [1] 20Le M., 2020, Surv. Math. Appl., V15, P473
  • [2] 24Pink I., 2011, Commun. Math., V19, P1
  • [3] Alan M, 2020, PERIOD MATH HUNG, V81, P284, DOI 10.1007/s10998-020-00321-6
  • [4] Berczes A., 2014, Constanta Ser. Mat., V22, P51
  • [5] On the diophantine equation x2 + p2k = yn
    Berczes, Attila
    Pink, Istvan
    [J]. ARCHIV DER MATHEMATIK, 2008, 91 (06) : 505 - 517
  • [6] Bilu Y, 2001, J REINE ANGEW MATH, V539, P75
  • [7] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [8] On the diophantine equation x 2+2 a • 3 b • 11 c = y n
    Cangul, Ismail Naci
    Demirci, Musa
    Inam, Ilker
    Luca, Florian
    Soydan, Gokhan
    [J]. MATHEMATICA SLOVACA, 2013, 63 (03) : 647 - 659
  • [9] Cangul IN, 2010, FIBONACCI QUART, V48, P39
  • [10] On the numerical factors of the arithmetic forms alpha(n +/-) beta (n) .
    Carmichael, RD
    [J]. ANNALS OF MATHEMATICS, 1913, 15 : 30 - 48