Integrative multi-omics analysis unveils stemness-associated molecular subtypes in prostate cancer and pan-cancer: prognostic and therapeutic significance

被引:8
作者
Zheng, Kun [1 ]
Hai, Youlong [1 ]
Xi, Yue [2 ]
Zhang, Yukun [3 ]
Liu, Zheqi [4 ]
Chen, Wantao [5 ,6 ]
Hu, Xiaoyong [1 ]
Zou, Xin [7 ,8 ]
Hao, Jie [9 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 6, Dept Urol, Sch Med, Shanghai 200233, Peoples R China
[2] Shandong First Med Univ, Cent Hosp, Dept Reprod Med, Jinan 250013, Shandong, Peoples R China
[3] Beijing Univ Chinese Med East Hosp, Zaozhuang Hosp, Zaozhuang 277000, Shandong, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Dept Oral & Maxillofacial Surg, Shanghai 200032, Peoples R China
[5] Shanghai Jiao Tong Univ, Peoples Hosp 9, Natl Clin Res Ctr Stomatol, Shanghai Key Lab Stomatol,Sch Med, Shanghai 200011, Peoples R China
[6] Shanghai Jiao Tong Univ, Peoples Hosp 9, Shanghai Res Inst Stomatol, Natl Clin Res Ctr Stomatol,Sch Med, Shanghai 200011, Peoples R China
[7] Fudan Univ, Jinshan Hosp Ctr Tumor Diag & Therapy, Jinshan Hosp, Shanghai 201508, Peoples R China
[8] Fudan Univ, Jinshan Hosp, Dept Pathol, Shanghai 201508, Peoples R China
[9] Fudan Univ, Zhongshan Hosp, Inst Clin Sci, Shanghai 200032, Peoples R China
关键词
Prostate cancer; Stemness subtype; RNA sequencing; Pan-cancer; Machine learning; Immunotherapy; SINGLE-CELL; IMMUNOTHERAPY RESPONSE; RISK STRATIFICATION; GENE-EXPRESSION; PD-L1; BLOCKADE; DISCOVERY; FEATURES; STATISTICS; VALIDATION; CHECKPOINT;
D O I
10.1186/s12967-023-04683-6
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
BackgroundProstate cancer (PCA) is the fifth leading cause of cancer-related deaths worldwide, with limited treatment options in the advanced stages. The immunosuppressive tumor microenvironment (TME) of PCA results in lower sensitivity to immunotherapy. Although molecular subtyping is expected to offer important clues for precision treatment of PCA, there is currently a shortage of dependable and effective molecular typing methods available for clinical practice. Therefore, we aim to propose a novel stemness-based classification approach to guide personalized clinical treatments, including immunotherapy.MethodsAn integrative multi-omics analysis of PCA was performed to evaluate stemness-level heterogeneities. Unsupervised hierarchical clustering was used to classify PCAs based on stemness signature genes. To make stemness-based patient classification more clinically applicable, a stemness subtype predictor was jointly developed by using four PCA datasets and 76 machine learning algorithms.ResultsWe identified stemness signatures of PCA comprising 18 signaling pathways, by which we classified PCA samples into three stemness subtypes via unsupervised hierarchical clustering: low stemness (LS), medium stemness (MS), and high stemness (HS) subtypes. HS patients are sensitive to androgen deprivation therapy, taxanes, and immunotherapy and have the highest stemness, malignancy, tumor mutation load (TMB) levels, worst prognosis, and immunosuppression. LS patients are sensitive to platinum-based chemotherapy but resistant to immunotherapy and have the lowest stemness, malignancy, and TMB levels, best prognosis, and the highest immune infiltration. MS patients represent an intermediate status of stemness, malignancy, and TMB levels with a moderate prognosis. We further demonstrated that these three stemness subtypes are conserved across pan-tumor. Additionally, the 9-gene stemness subtype predictor we developed has a comparable capability to 18 signaling pathways to make tumor diagnosis and to predict tumor recurrence, metastasis, progression, prognosis, and efficacy of different treatments.ConclusionsThe three stemness subtypes we identified have the potential to be a powerful tool for clinical tumor molecular classification in PCA and pan-cancer, and to guide the selection of immunotherapy or other sensitive treatments for tumor patients.
引用
收藏
页数:19
相关论文
共 116 条
[1]   Genomic correlates of clinical outcome in advanced prostate cancer [J].
Abida, Wassim ;
Cyrta, Joanna ;
Heller, Glenn ;
Prandi, Davide ;
Armenia, Joshua ;
Coleman, Ilsa ;
Cieslik, Marcin ;
Benelli, Matteo ;
Robinson, Dan ;
Van Allen, Eliezer M. ;
Sboner, Andrea ;
Fedrizzi, Tarcisio ;
Mosquera, Juan Miguel ;
Robinson, Brian D. ;
De Sarkar, Navonil ;
Kunju, Lakshmi P. ;
Tomlins, Scott ;
Wu, Yi Mi ;
Rodrigues, Daniel Nava ;
Loda, Massimo ;
Gopalan, Anuradha ;
Reuter, Victor E. ;
Pritchard, Colin C. ;
Mateo, Joaquin ;
Bianchini, Diletta ;
Miranda, Susana ;
Carreira, Suzanne ;
Rescigno, Pasquale ;
Filipenko, Julie ;
Vinson, Jacob ;
Montgomery, Robert B. ;
Beltran, Himisha ;
Heath, Elisabeth I. ;
Scher, Howard I. ;
Kantoff, Philip W. ;
Taplin, Mary-Ellen ;
Schultz, Nikolaus ;
deBono, Johann S. ;
Demichelis, Francesca ;
Nelson, Peter S. ;
Rubin, Mark A. ;
Chinnaiyan, Arul M. ;
Sawyers, Charles L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (23) :11428-11436
[2]   Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance [J].
Alumkal, Joshi J. ;
Sun, Duanchen ;
Lu, Eric ;
Beer, Tomasz M. ;
Thomas, George V. ;
Latour, Emile ;
Aggarwal, Rahul ;
Cetnar, Jeremy ;
Ryan, Charles J. ;
Tabatabaei, Shaadi ;
Bailey, Shawna ;
Turina, Claire B. ;
Quigley, David A. ;
Guan, Xiangnan ;
Foye, Adam ;
Youngren, Jack F. ;
Urrutia, Joshua ;
Huang, Jiaoti ;
Weinstein, Alana S. ;
Friedl, Verena ;
Rettig, Matthew ;
Reiter, Robert E. ;
Spratt, Daniel E. ;
Gleave, Martin ;
Evans, Christopher P. ;
Stuart, Joshua M. ;
Chen, Yiyi ;
Feng, Felix Y. ;
Small, Eric J. ;
Witte, Owen N. ;
Xia, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (22) :12315-12323
[3]   The Intratumoral Balance between Metabolic and Immunologic Gene Expression Is Associated with Anti-PD-1 Response in Patients with Renal Cell Carcinoma [J].
Ascierto, Maria Libera ;
McMiller, Tracee L. ;
Berger, Alan E. ;
Danilova, Ludmila ;
Anders, Robert A. ;
Netto, George J. ;
Xu, Haiying ;
Pritchard, Theresa S. ;
Fan, Jinshui ;
Cheadle, Chris ;
Cope, Leslie ;
Drake, Charles G. ;
Pardoll, Drew M. ;
Taube, Janis M. ;
Topalian, Suzanne L. .
CANCER IMMUNOLOGY RESEARCH, 2016, 4 (09) :726-733
[4]   Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma [J].
Auslander, Noam ;
Zhang, Gao ;
Lee, Joo Sang ;
Frederick, Dennie T. ;
Miao, Benchun ;
Moll, Tabea ;
Tian, Tian ;
Wei, Zhi ;
Madan, Sanna ;
Sullivan, Ryan J. ;
Boland, Genevieve ;
Flaherty, Keith ;
Herlyn, Meenhard ;
Ruppin, Eytan .
NATURE MEDICINE, 2018, 24 (10) :1545-+
[5]   Novel insights in cell cycle dysregulation during prostate cancer progression [J].
Ben-Salem, Salma ;
Venkadakrishnan, Varadha Balaji ;
Heemers, Hannelore, V .
ENDOCRINE-RELATED CANCER, 2021, 28 (06) :R141-R155
[6]   Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma [J].
Braun, David A. ;
Hou, Yue ;
Bakouny, Ziad ;
Ficial, Miriam ;
Sant' Angelo, Miriam ;
Forman, Juliet ;
Ross-Macdonald, Petra ;
Berger, Ashton C. ;
Jegede, Opeyemi A. ;
Elagina, Liudmilla ;
Steinharter, John ;
Sun, Maxine ;
Wind-Rotolo, Megan ;
Pignon, Jean-Christophe ;
Cherniack, Andrew D. ;
Lichtenstein, Lee ;
Neuberg, Donna ;
Catalano, Paul ;
Freeman, Gordon J. ;
Sharpe, Arlene H. ;
McDermott, David F. ;
Van Allen, Eliezer M. ;
Signoretti, Sabina ;
Wu, Catherine J. ;
Shukla, Sachet A. ;
Choueiri, Toni K. .
NATURE MEDICINE, 2020, 26 (06) :909-+
[7]  
Bray F, 2018, CA-CANCER J CLIN, V68, P394, DOI [10.3322/caac.21492, 10.3322/caac.21609]
[8]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[9]   Revisiting Immunotherapy: A Focus on Prostate Cancer [J].
Cha, Ha-Ram ;
Lee, Joo Hyoung ;
Ponnazhagan, Selvarangan .
CANCER RESEARCH, 2020, 80 (08) :1615-1623
[10]   Moving pan-cancer studies from basic research toward the clinic [J].
Chen, Feng ;
Wendl, Michael C. ;
Wyczalkowski, Matthew A. ;
Bailey, Matthew H. ;
Li, Yize ;
Li Ding .
NATURE CANCER, 2021, 2 (09) :879-890