Dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning for optimization problems

被引:1
作者
Yang, Qingyong [1 ]
Chu, Shu-Chuan [1 ]
Pan, Jeng-Shyang [1 ,2 ]
Chou, Jyh-Horng [3 ,4 ]
Watada, Junzo [5 ]
机构
[1] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[2] Chaoyang Univ Technol, Dept Informat Management, Taichung, Taiwan
[3] Kaohsiung Med Univ, Dept Healthcare Adm & Med Informat, Kaohsiung 807, Taiwan
[4] Feng Chia Univ, Dept Mech & Comp Aided Engn, Taichung 407, Taiwan
[5] Waseda Univ, Grad Sch Informat Prod & Syst, Kitakyushu 8080135, Japan
关键词
Differential evolution; Multi-population; Population diversity; Reinforcement learning; Individual dynamic migration; MUTATION STRATEGY; ENSEMBLE; SEARCH; PARAMETERS; SOLVE;
D O I
10.1007/s40747-023-01243-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The introduction of a multi-population structure in differential evolution (DE) algorithm has been proven to be an effective way to achieve algorithm adaptation and multi-strategy integration. However, in existing studies, the mutation strategy selection of each subpopulation during execution is fixed, resulting in poor self-adaptation of subpopulations. To solve this problem, a dynamic multi-strategy integrated differential evolution algorithm based on reinforcement learning (RLDMDE) is proposed in this paper. By employing reinforcement learning, each subpopulation can adaptively select the mutation strategy according to the current environmental state (population diversity). Based on the population state, this paper proposes an individual dynamic migration strategy to "reward" or "punish" the population to avoid wasting individual computing resources. Furthermore, this paper applies two methods of good point set and random opposition-based learning (ROBL) in the population initialization stage to improve the quality of the initial solutions. Finally, to evaluate the performance of the RLDMDE algorithm, this paper selects two benchmark function sets, CEC2013 and CEC2017, and six engineering design problems for testing. The results demonstrate that the RLDMDE algorithm has good performance and strong competitiveness in solving optimization problems.
引用
收藏
页码:1845 / 1877
页数:33
相关论文
共 50 条
  • [41] Multi-strategy adaptive cuckoo search algorithm for numerical optimization
    Cheng, Jiatang
    Xiong, Yan
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (03) : 2031 - 2055
  • [42] Chemical process dynamic optimization based on the differential evolution algorithm with an adaptive scheduling mutation strategy
    Zhu, Jun
    Yan, Xuefeng
    Zhao, Weixiang
    ENGINEERING OPTIMIZATION, 2013, 45 (10) : 1205 - 1221
  • [43] An effective improved differential evolution algorithm to solve constrained optimization problems
    Yu, Xiaobing
    Lu, Yiqun
    Wang, Xuming
    Luo, Xiang
    Cai, Mei
    SOFT COMPUTING, 2019, 23 (07) : 2409 - 2427
  • [44] Improved Adaptive Lion Swarm Optimization Algorithm Based on Multi-Strategy
    Liu M.
    Zhang Y.
    Guo J.
    Chen J.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (01): : 85 - 93
  • [45] Adaptive differential evolution algorithm with a pheromone-based learning strategy for global continuous optimization
    Singsathid, Pirapong
    Puphasuk, Pikul
    Wetweerapong, Jeerayut
    FOUNDATIONS OF COMPUTING AND DECISION SCIENCES, 2023, 48 (02) : 243 - 266
  • [46] Reinforcement Learning-Based Differential Evolution Algorithm with Levy Flight
    Liu, Xiaoyu
    Zhang, Qingke
    Xi, Hongtong
    Zhang, Huixia
    Gao, Shuang
    Zhang, Huaxiang
    BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PT 1, BIC-TA 2023, 2024, 2061 : 142 - 156
  • [47] Scheduling of Continuous Annealing With a Multi-Objective Differential Evolution Algorithm Based on Deep Reinforcement Learning
    Li, Tianyang
    Meng, Ying
    Tang, Lixin
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (02) : 1767 - 1780
  • [48] Multi-strategy co-evolutionary differential evolution for mixed-variable optimization
    Peng, Hu
    Han, Yupeng
    Deng, Changshou
    Wang, Jing
    Wu, Zhijian
    KNOWLEDGE-BASED SYSTEMS, 2021, 229
  • [49] Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization
    Yu, Xiaobing
    Lu, Yangchen
    ENERGY, 2023, 284
  • [50] A Multi-Strategy Whale Optimization Algorithm and Its Application
    Yang, Wenbiao
    Xia, Kewen
    Fan, Shurui
    Wang, Li
    Li, Tiejun
    Zhang, Jiangnan
    Feng, Yu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 108