Hyperspectral Meets Optical Flow: Spectral Flow Extraction for Hyperspectral Image Classification

被引:9
作者
Liu, Bing [1 ]
Sun, Yifan [1 ]
Yu, Anzhu [1 ]
Xue, Zhixiang [1 ]
Zuo, Xibing [1 ]
机构
[1] PLA Strateg Support Force Informat Engn Univ, Zhengzhou 450001, Peoples R China
关键词
Hyperspectral image classification; feature extraction; spectral flow; optical flow; deep matching; CONVOLUTIONAL NEURAL-NETWORK; MORPHOLOGICAL ATTRIBUTE PROFILES; SPATIAL CLASSIFICATION; RANDOM FOREST; AUTOENCODER; ACCURACY; SVM;
D O I
10.1109/TIP.2023.3312928
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) classification has always been recognised as a difficult task. It is therefore a research hotspot in remote sensing image processing and analysis, and a number of studies have been conducted to better extract spectral and spatial features. This study aimed to track the variation of the spectrum in hyperspectral images from a sequential data perspective to obtain more distinguishable features. Based on the characteristics of optical flow, this study introduces an optical flow technique for the extraction of spectral flow that denotes the spectral variation and implements a dense optical flow extraction method based on deep matching. Lastly, the extracted spectral flow are combined with the original spectral features and input into a commonly used support vector machine (SVM) classifier to complete the classification. Extensive classification experiments on three benchmark HSI test sets show that the classification accuracy obtained by the spectral flow extracted in this study (SpectralFlow) is higher than traditional spatial feature extraction methods, texture feature extraction methods, and the latest deep-learning-based methods. Furthermore, the proposed method can produce finer classification thematic maps, thereby demonstrating strong practical application potential.
引用
收藏
页码:5181 / 5196
页数:16
相关论文
共 74 条
[1]  
Barnes C, 2010, LECT NOTES COMPUT SC, V6313, P29
[2]   Differential Evolution Extreme Learning Machine for the Classification of Hyperspectral Images [J].
Bazi, Yakoub ;
Alajlan, Naif ;
Melgani, Farid ;
AlHichri, Haikel ;
Malek, Salim ;
Yager, Ronald R. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (06) :1066-1070
[3]  
Bouguet J., 2000, Pyramidal implementation of the lucas kanade feature tracker description of the algorithm
[4]   High accuracy optical flow estimation based on a theory for warping [J].
Brox, T ;
Bruhn, A ;
Papenberg, N ;
Weickert, J .
COMPUTER VISION - ECCV 2004, PT 4, 2004, 2034 :25-36
[5]   Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation [J].
Brox, Thomas ;
Malik, Jitendra .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (03) :500-513
[6]  
Bruhn A, 2005, IEEE I CONF COMP VIS, P749
[7]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373
[8]   Semi-supervised graph-based hyperspectral image classification [J].
Camps-Valls, Gustavo ;
Bandos, Tatyana V. ;
Zhou, Dengyong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3044-3054
[9]   Automatic Design of Convolutional Neural Network for Hyperspectral Image Classification [J].
Chen, Yushi ;
Zhu, Kaiqiang ;
Zhu, Lin ;
He, Xin ;
Ghamisi, Pedram ;
Benediktsson, Jon Atli .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (09) :7048-7066
[10]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392