Inflammation and immunity in the pathogenesis of hypoxic pulmonary hypertension

被引:20
作者
Ye, Yi [1 ,2 ,3 ,4 ]
Xu, Qiying [1 ,2 ,3 ,4 ]
Wuren, Tana [1 ,2 ,3 ,4 ]
机构
[1] Qinghai Univ, Res Ctr High Altitude Med, Xining, Peoples R China
[2] Minist Educ, High Altitude Med Key Lab, Xining, Peoples R China
[3] Qinghai Prov Key Lab Applicat High Altitude Med, Xining, Peoples R China
[4] Qinghai Utah Key Lab High Altitude Med, Xining, Qinghai, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
hypoxia; pulmonary hypertension; inflammation; immunity; metabolism; HIF; MIGRATION INHIBITORY FACTOR; INDUCED MITOGENIC FACTOR; NF-KAPPA-B; CHRONIC INTERMITTENT HYPOXIA; MUSCLE-CELL PROLIFERATION; ARTERIAL-HYPERTENSION; TNF-ALPHA; PROTEIN-RECEPTOR; MAST-CELLS; LUNG;
D O I
10.3389/fimmu.2023.1162556
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Hypoxic pulmonary hypertension (HPH) is a complicated vascular disorder characterized by diverse mechanisms that lead to elevated blood pressure in pulmonary circulation. Recent evidence indicates that HPH is not simply a pathological syndrome but is instead a complex lesion of cellular metabolism, inflammation, and proliferation driven by the reprogramming of gene expression patterns. One of the key mechanisms underlying HPH is hypoxia, which drives immune/inflammation to mediate complex vascular homeostasis that collaboratively controls vascular remodeling in the lungs. This is caused by the prolonged infiltration of immune cells and an increase in several pro-inflammatory factors, which ultimately leads to immune dysregulation. Hypoxia has been associated with metabolic reprogramming, immunological dysregulation, and adverse pulmonary vascular remodeling in preclinical studies. Many animal models have been developed to mimic HPH; however, many of them do not accurately represent the human disease state and may not be suitable for testing new therapeutic strategies. The scientific understanding of HPH is rapidly evolving, and recent efforts have focused on understanding the complex interplay among hypoxia, inflammation, and cellular metabolism in the development of this disease. Through continued research and the development of more sophisticated animal models, it is hoped that we will be able to gain a deeper understanding of the underlying mechanisms of HPH and implement more effective therapies for this debilitating disease.
引用
收藏
页数:15
相关论文
共 171 条
[51]   Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats [J].
Ito, Takayuki ;
Okada, Takashi ;
Miyashita, Hiroshi ;
Nomoto, Tatsuya ;
Nonaka-Sarukawa, Mutsuko ;
Uchibori, Ryosuke ;
Maeda, Yoshikazu ;
Urabe, Masashi ;
Mizukami, Hiroaki ;
Kume, Akihiro ;
Takahashi, Masafumi ;
Ikeda, Uichi ;
Shimada, Kazuyuki ;
Ozawa, Keiya .
CIRCULATION RESEARCH, 2007, 101 (07) :734-741
[52]   Effects of IL-1β, TNF-α, and macrophage migration inhibitory factor on prostacyclin synthesis in rat pulmonary artery smooth muscle cells [J].
Itoh, A ;
Nishihira, J ;
Makita, H ;
Miyamoto, K ;
Yamaguchi, E ;
Nishimura, M .
RESPIROLOGY, 2003, 8 (04) :467-472
[53]   RAGE-mediated extracellular matrix proteins accumulation exacerbates HySu-induced pulmonary hypertension [J].
Jia, Daile ;
He, Yuhu ;
Zhu, Qian ;
Liu, Huan ;
Zuo, Caojian ;
Chen, Guilin ;
Yu, Ying ;
Lu, Ankang .
CARDIOVASCULAR RESEARCH, 2017, 113 (06) :586-597
[54]   Temporal regulation of HIF-1 and NF-κB in hypoxic hepatocarcinoma cells [J].
Jiang, Yuan ;
Zhu, Ying ;
Wang, Xinxin ;
Gong, Juan ;
Hu, Chunyan ;
Guo, Bo ;
Zhu, Bo ;
Li, Yongsheng .
ONCOTARGET, 2015, 6 (11) :9409-9419
[55]   Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF [J].
Jin, Fengyan ;
Zheng, Xiangyu ;
Yang, Yanping ;
Yao, Gang ;
Ye, Long ;
Doeppner, Thorsten R. ;
Hermann, Dirk M. ;
Wang, Haifeng ;
Dai, Yun .
AGING-US, 2019, 11 (02) :328-349
[56]   Hypoxia-Inducible Factor 1α Is a Critical Downstream Mediator for Hypoxia-Induced Mitogenic Factor (FIZZ1/RELMα)-Induced Pulmonary Hypertension [J].
Johns, Roger A. ;
Takimoto, Eiki ;
Meuchel, Lucas W. ;
Elsaigh, Esra ;
Zhang, Ailan ;
Heller, Nicola M. ;
Semenza, Gregg L. ;
Yamaji-Kegan, Kazuyo .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36 (01) :134-144
[57]   Systemic inflammation in patients with COPD and pulmonary hypertension [J].
Joppa, Pavol ;
Petrasova, Darina ;
Stancak, Branislav ;
Tkacova, Ruzena .
CHEST, 2006, 130 (02) :326-333
[58]   Identification of a Novel HIF-1α-αMβ2 Integrin-NET Axis in Fibrotic Interstitial Lung Disease [J].
Khawaja, Akif A. ;
Chong, Deborah L. W. ;
Sahota, Jagdeep ;
Mikolasch, Theresia A. ;
Pericleous, Charis ;
Ripoll, Vera M. ;
Booth, Helen L. ;
Khan, Saif ;
Rodriguez-Justo, Manuel ;
Giles, Ian P. ;
Porter, Joanna C. .
FRONTIERS IN IMMUNOLOGY, 2020, 11
[59]   Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils [J].
Kimishima, Yusuke ;
Misaka, Tomofumi ;
Yokokawa, Tetsuro ;
Wada, Kento ;
Ueda, Koki ;
Sugimoto, Koichi ;
Minakawa, Keiji ;
Nakazato, Kazuhiko ;
Ishida, Takafumi ;
Oshima, Motohiko ;
Koide, Shuhei ;
Shide, Kotaro ;
Shimoda, Kazuya ;
Iwama, Atsushi ;
Ikeda, Kazuhiko ;
Takeishi, Yasuchika .
NATURE COMMUNICATIONS, 2021, 12 (01)
[60]   Myeloperoxidase aggravates pulmonary arterial hypertension by activation of vascular Rho-kinase [J].
Klinke, Anna ;
Berghausen, Eva ;
Friedrichs, Kai ;
Molz, Simon ;
Lau, Denise ;
Remane, Lisa ;
Berlin, Matthias ;
Kaltwasser, Charlotte ;
Adam, Matti ;
Mehrkens, Dennis ;
Mollenhauer, Martin ;
Manchanda, Kashish ;
Ravekes, Thorben ;
Heresi, Gustavo A. ;
Aytekin, Metin ;
Dweik, Raed A. ;
Hennigs, Jan K. ;
Kubala, Lukas ;
Michaelsson, Erik ;
Rosenkranz, Stephan ;
Rudolph, Tanja K. ;
Hazen, Stanley L. ;
Klose, Hans ;
Schermuly, Ralph T. ;
Rudolph, Volker ;
Baldus, Stephan .
JCI INSIGHT, 2018, 3 (11)