Poro-viscoelastic material parameter identification of brain tissue-mimicking hydrogels

被引:10
作者
Kainz, Manuel P. [1 ]
Greiner, Alexander [2 ]
Hinrichsen, Jan [2 ]
Kolb, Dagmar [3 ,4 ]
Comellas, Ester [5 ]
Steinmann, Paul [2 ,6 ]
Budday, Silvia [2 ]
Terzano, Michele [1 ]
Holzapfel, Gerhard A. [1 ,7 ]
机构
[1] Graz Univ Technol, Inst Biomech, Graz, Austria
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Appl Mech, Dept Mech Engn, Erlangen, Germany
[3] Med Univ Graz, Ctr Med Res, Gottfried Schatz Res Ctr, Core Facil Ultrastruct Anal, Graz, Austria
[4] Med Univ Graz, Gottfried Schatz Res Ctr, Div Cell Biol Histol & Embryol, Graz, Austria
[5] Univ Politecn Catalunya UPC, Dept Phys, Barcelona, Spain
[6] Univ Glasgow, Glasgow Computat Engn Ctr, Glasgow City, Scotland
[7] Norwegian Univ Sci & Technol NTNU, Dept Struct Engn, Trondheim, Norway
基金
奥地利科学基金会;
关键词
brain tissue; hydrogel; polyvinyl alcohol; biomechanical testing; indentation; parameter identification; poroelasticity; viscoelasticity; MECHANICAL-PROPERTIES; POLYVINYL-ALCOHOL; WHITE-MATTER; SOFT-TISSUE; COMPOSITE HYDROGEL; IN-VIVO; INDENTATION; CARTILAGE; MODEL; POROELASTICITY;
D O I
10.3389/fbioe.2023.1143304
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding and characterizing the mechanical and structural properties of brain tissue is essential for developing and calibrating reliable material models. Based on the Theory of Porous Media, a novel nonlinear poro-viscoelastic computational model was recently proposed to describe the mechanical response of the tissue under different loading conditions. The model contains parameters related to the time-dependent behavior arising from both the viscoelastic relaxation of the solid matrix and its interaction with the fluid phase. This study focuses on the characterization of these parameters through indentation experiments on a tailor-made polyvinyl alcohol-based hydrogel mimicking brain tissue. The material behavior is adjusted to ex vivo porcine brain tissue. An inverse parameter identification scheme using a trust region reflective algorithm is introduced and applied to match experimental data obtained from the indentation with the proposed computational model. By minimizing the error between experimental values and finite element simulation results, the optimal constitutive model parameters of the brain tissue-mimicking hydrogel are extracted. Finally, the model is validated using the derived material parameters in a finite element simulation.
引用
收藏
页数:14
相关论文
共 77 条
  • [1] The deal .II library, Version 9.2
    Arndt, Daniel
    Bangerth, Wolfgang
    Blais, Bruno
    Clevenger, Thomas C.
    Fehling, Marc
    Grayver, Alexander, V
    Heister, Timo
    Heltai, Luca
    Kronbichler, Martin
    Maier, Matthias
    Munch, Peter
    Pelteret, Jean-Paul
    Rastak, Reza
    Tomas, Ignacio
    Turcksin, Bruno
    Wang, Zhuoran
    Wells, David
    [J]. JOURNAL OF NUMERICAL MATHEMATICS, 2020, 28 (03) : 131 - 146
  • [2] Towards brain-tissue-like biomaterials
    Axpe, Eneko
    Orive, Gorka
    Franze, Kristian
    Appel, Eric A.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [3] A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications
    Baker, Maribel I.
    Walsh, Steven P.
    Schwartz, Zvi
    Boyan, Barbara D.
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2012, 100B (05) : 1451 - 1457
  • [4] Bilston LE, 2011, BIOL MED PHYS BIOMED, P69, DOI 10.1007/978-1-4419-9997-9_4
  • [5] A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems
    Branch, MA
    Coleman, TF
    Li, YY
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (01) : 1 - 23
  • [6] Towards microstructure-informed material models for human brain tissue
    Budday, S.
    Sarem, M.
    Starck, L.
    Sommer, G.
    Pfefferle, J.
    Phunchago, N.
    Kuhl, E.
    Paulsen, F.
    Steinmann, P.
    Shastri, V. P.
    Holzapfel, G. A.
    [J]. ACTA BIOMATERIALIA, 2020, 104 (104) : 53 - 65
  • [7] Viscoelastic parameter identification of human brain tissue
    Budday, S.
    Sommer, G.
    Holzapfel, G. A.
    Steinmann, P.
    Kuhl, E.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2017, 74 : 463 - 476
  • [8] Mechanical characterization of human brain tissue
    Budday, S.
    Sommer, G.
    Birkl, C.
    Langkammer, C.
    Haybaeck, J.
    Kohnert, J.
    Bauer, M.
    Paulsen, F.
    Steinmann, P.
    Kuhl, E.
    Holzapfel, G. A.
    [J]. ACTA BIOMATERIALIA, 2017, 48 : 319 - 340
  • [9] Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
    Budday, Silvia
    Ovaert, Timothy C.
    Holzapfel, Gerhard A.
    Steinmann, Paul
    Kuhl, Ellen
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2020, 27 (04) : 1187 - 1230
  • [10] Mechanical properties of gray and white matter brain tissue by indentation
    Budday, Silvia
    Nay, Richard
    de Rooij, Rijk
    Steinmann, Paul
    Wyrobek, Thomas
    Ovaert, Timothy C.
    Kuhl, Ellen
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 46 : 318 - 330