Characterizations of Complex Finsler Metrics

被引:2
作者
Li, Hongjun [1 ]
Xia, Hongchuan [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Finsler connection; Canonical connection; Holomorphic sectional curvature tensor; Balanced complex Finsler metric; Rund Kahler-Finsler-like metric; CONNECTIONS;
D O I
10.1007/s12220-023-01272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that the holomorphic sectional curvature tensors of the canonical connection coincide with those of the Chern-Finsler connection associated to F if and only if F is a Kahler-Finsler metric. We also investigate the relationship of the Ricci curvatures (resp. scalar curvatures) of these two connections when M is compact. As an application, two characterizations of balanced complex Finsler metrics are given. Next, we obtain a sufficient and necessary condition for a balanced complex Finsler metric to be Kahler-Finsler. Finally, we investigate conformal transformations of a balanced complex Finsler metric.
引用
收藏
页数:27
相关论文
共 50 条
[41]   Connection considerations of gravitational field in Finsler spaces [J].
Stavrinos, P. C. ;
Ikeda, Satoshi .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (04) :763-769
[42]   Curvatures of strongly convex Kahler-Finsler manifolds [J].
Li, Hongjun ;
Qiu, Chunhui ;
Zhong, Guozhu .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 86
[43]   S-closed conformal transformations in Finsler geometry [J].
Shen, Bin .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2018, 58 :254-263
[44]   Geodesics and Jacobi fields of pseudo-Finsler manifolds [J].
Angel Javaloyes, Miguel ;
Soares, Bruno Learth .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2) :57-78
[45]   ON THE LIE GROUP STRUCTURE OF PSEUDO-FINSLER ISOMETRIES [J].
Torrome, Ricardo Gallego ;
Piccione, Paolo .
HOUSTON JOURNAL OF MATHEMATICS, 2015, 41 (02) :513-521
[46]   BALANCED HKT METRICS AND STRONG HKT METRICS ON HYPERCOMPLEX MANIFOLDS [J].
Verbitsky, Misha .
MATHEMATICAL RESEARCH LETTERS, 2009, 16 (04) :735-752
[47]   A Kahler structure on Finsler spaces with nonzero constant flag curvature [J].
Peyghan, E. ;
Tayebi, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (02)
[48]   A class of semibasic vector 1-forms on Finsler manifolds [J].
Tayebi, Akbar ;
Barzegari, Mansoor .
PERIODICA MATHEMATICA HUNGARICA, 2014, 69 (02) :239-250
[49]   On isotropic Berwald metrics [J].
Tayebi, Akbar ;
Najafi, Behzad .
ANNALES POLONICI MATHEMATICI, 2012, 103 (02) :109-121
[50]   Generalized Berwald metrics [J].
Peyghan, Esmaeil ;
Tayebi, Akbar .
TURKISH JOURNAL OF MATHEMATICS, 2012, 36 (03) :475-484