Characterizations of Complex Finsler Metrics

被引:2
作者
Li, Hongjun [1 ]
Xia, Hongchuan [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Finsler connection; Canonical connection; Holomorphic sectional curvature tensor; Balanced complex Finsler metric; Rund Kahler-Finsler-like metric; CONNECTIONS;
D O I
10.1007/s12220-023-01272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that the holomorphic sectional curvature tensors of the canonical connection coincide with those of the Chern-Finsler connection associated to F if and only if F is a Kahler-Finsler metric. We also investigate the relationship of the Ricci curvatures (resp. scalar curvatures) of these two connections when M is compact. As an application, two characterizations of balanced complex Finsler metrics are given. Next, we obtain a sufficient and necessary condition for a balanced complex Finsler metric to be Kahler-Finsler. Finally, we investigate conformal transformations of a balanced complex Finsler metric.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Weakly complex Einstein-Finsler vector bundle
    Sun, Liling
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (06) : 1079 - 1088
  • [22] VERTICAL CHERN TYPE CLASSES ON COMPLEX FINSLER BUNDLES
    Ida, Cristian
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2011, 57 (02): : 377 - 386
  • [23] The Koppelman-Leray formula on complex Finsler manifolds
    Chunhui Qiu
    Tongde Zhong
    Science in China Series A: Mathematics, 2005, 48 : 847 - 863
  • [24] The Koppelman-Leray formula on complex Finsler manifolds
    QIU Chunhui & ZHONG Tongde School of Mathematical Sciences
    Academy of Mathematics and System Sciences
    Science China Mathematics, 2005, (06) : 847 - 863
  • [25] Canonical metrics in complex geometry
    Fino, Anna
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2025, 18 (01): : 185 - 198
  • [26] Integral formulas for differential forms of type (p, q) on complex Finsler manifolds
    Qiu, CH
    Zhong, TD
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2004, 47 (02): : 284 - 296
  • [27] Integral formulas for differential forms of type (p, q) on complex Finsler manifolds
    Chunhui Qiu
    Tongde Zhong
    Science in China Series A: Mathematics, 2004, 47 : 284 - 296
  • [28] Integral formulas for differential forms of type (p,q) on complex Finsler manifolds
    QIU Chunhui & ZHONG TongdeDepartment of Mathematics
    Science China Mathematics, 2004, (02) : 284 - 296
  • [29] A METRICAL APPROACH TO FINSLER GEOMETRY
    Minguzzi, E.
    REPORTS ON MATHEMATICAL PHYSICS, 2023, 92 (02) : 173 - 195
  • [30] On parallel transport in Finsler spaces
    Crampin, Mike
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (3-4): : 343 - 370