Characterizations of Complex Finsler Metrics

被引:2
|
作者
Li, Hongjun [1 ]
Xia, Hongchuan [2 ]
机构
[1] Henan Univ, Sch Math & Stat, Kaifeng 475004, Peoples R China
[2] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Peoples R China
基金
中国国家自然科学基金;
关键词
Chern-Finsler connection; Canonical connection; Holomorphic sectional curvature tensor; Balanced complex Finsler metric; Rund Kahler-Finsler-like metric; CONNECTIONS;
D O I
10.1007/s12220-023-01272-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Munteanu (Complex spaces in Finsler, Lagrange and Hamilton Geometries, Kluwer Academic Publishers, Dordrecht, 2004) defined the canonical connection associated to a strongly pseudoconvex complex Finsler manifold (M, F). We first prove that the holomorphic sectional curvature tensors of the canonical connection coincide with those of the Chern-Finsler connection associated to F if and only if F is a Kahler-Finsler metric. We also investigate the relationship of the Ricci curvatures (resp. scalar curvatures) of these two connections when M is compact. As an application, two characterizations of balanced complex Finsler metrics are given. Next, we obtain a sufficient and necessary condition for a balanced complex Finsler metric to be Kahler-Finsler. Finally, we investigate conformal transformations of a balanced complex Finsler metric.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Characterizations of Complex Finsler Metrics
    Hongjun Li
    Hongchuan Xia
    The Journal of Geometric Analysis, 2023, 33
  • [2] On a Class of Smooth Complex Finsler Metrics
    Xia, Hongchuan
    Zhong, Chunping
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 657 - 686
  • [3] On unitary invariant strongly pseudoconvex complex Finsler metrics
    Zhong, Chunping
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2015, 40 : 159 - 186
  • [4] Weakly stretch Finsler metrics
    Najafi, Behzad
    Tayebi, Akbar
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2017, 91 (3-4): : 441 - 454
  • [5] Geometry of holomorphic invariant strongly pseudoconvex complex Finsler metrics on the classical domains
    Ge, Xiaoshu
    Zhong, Chunping
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (08) : 1827 - 1864
  • [6] Generalized P-reducible Finsler metrics
    Heydari, A.
    Peyghan, E.
    Tayebi, A.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (02) : 286 - 296
  • [7] Kahler Finsler Metrics Are Actually Strongly Kahler
    Chen, Bin
    Shen, Yibing
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (02) : 173 - 178
  • [8] Laplacian on Complex Finsler Manifolds
    Jinxiu XIAO 1 Tongde ZHONG 2 Chunhui QIU 2 1 Department of Applied Mathematics
    ChineseAnnalsofMathematics(SeriesB), 2011, 32 (04) : 507 - 520
  • [9] Laplacian on complex Finsler manifolds
    Xiao, Jinxiu
    Zhong, Tongde
    Qiu, Chunhui
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (04) : 507 - 520
  • [10] Laplacian on complex Finsler manifolds
    Jinxiu Xiao
    Tongde Zhong
    Chunhui Qiu
    Chinese Annals of Mathematics, Series B, 2011, 32 : 507 - 520