Improving Predicate Representation in Scene Graph Generation by Self-Supervised Learning

被引:0
|
作者
Hasegawa, So [1 ]
Hiromoto, Masayuki [1 ]
Nakagawa, Akira [1 ]
Umeda, Yuhei [1 ]
机构
[1] Fujitsu Ltd, Tokyo, Japan
关键词
D O I
10.1109/WACV56688.2023.00276
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation (SGG) aims to understand sophisticated visual information by detecting triplets of subject, object, and their relationship (predicate). Since the predicate labels are heavily imbalanced, existing supervised methods struggle to improve accuracy for the rare predicates due to insufficient labeled data. In this paper, we propose SePiR, a novel self-supervised learning method for SGG to improve the representation of rare predicates. We first train a relational encoder by contrastive learning without using predicate labels, and then fine-tune a predicate classifier with labeled data. To apply contrastive learning to SGG, we newly propose data augmentation in which subject-object pairs are augmented by replacing their visual features with those from other images having the same object labels. By such augmentation, we can increase the variation of the visual features while keeping the relationship between the objects. Comprehensive experimental results on the Visual Genome dataset show that the SGG performance of SePiR is comparable to the state-of-the-art, and especially with the limited labeled dataset, our method significantly outperforms the existing supervised methods. Moreover, SePiR's improved representation enables the model architecture simpler, resulting in 3.6x and 6.3x reduction of the parameters and inference time from the existing method, independently.
引用
收藏
页码:2739 / 2748
页数:10
相关论文
共 50 条
  • [21] Knowledge-Aware Self-supervised Graph Representation Learning for Recommendation
    Sun, Yeheng
    Zhu, Jinghua
    Xi, Heran
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 420 - 432
  • [22] Self-Supervised Graph Representation Learning for Single-Cell Classification
    Dai, Qiguo
    Liu, Wuhao
    Yu, Xianhai
    Duan, Xiaodong
    Liu, Ziqiang
    INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, 2025,
  • [23] Graph Barlow Twins: A self-supervised representation learning framework for graphs
    Bielak, Piotr
    Kajdanowicz, Tomasz
    Chawla, Nitesh V.
    KNOWLEDGE-BASED SYSTEMS, 2022, 256
  • [24] GMAEEG: A Self-Supervised Graph Masked Autoencoder for EEG Representation Learning
    Fu, Zanhao
    Zhu, Huaiyu
    Zhao, Yisheng
    Huan, Ruohong
    Zhang, Yi
    Chen, Shuohui
    Pan, Yun
    IEEE Journal of Biomedical and Health Informatics, 2024, 28 (11): : 6486 - 6497
  • [25] Gated Self-supervised Learning for Improving Supervised Learning
    Fuadi, Erland Hillman
    Ruslim, Aristo Renaldo
    Wardhana, Putu Wahyu Kusuma
    Yudistira, Novanto
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 611 - 615
  • [26] SCENE REPRESENTATION LEARNING FROM VIDEOS USING SELF-SUPERVISED AND WEAKLY-SUPERVISED TECHNIQUES
    Peri, Raghuveer
    Parthasarathy, Srinivas
    Sundaram, Shiva
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1671 - 1675
  • [27] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735
  • [28] Graph Self-Supervised Learning: A Survey
    Liu, Yixin
    Jin, Ming
    Pan, Shirui
    Zhou, Chuan
    Zheng, Yu
    Xia, Feng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 5879 - 5900
  • [29] Graph Adversarial Self-Supervised Learning
    Yang, Longqi
    Zhang, Liangliang
    Yang, Wenjing
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [30] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139