IMFF-Net: An integrated multi-scale feature fusion network for accurate retinal vessel segmentation from fundus images

被引:9
作者
Liu, Mingtao [1 ]
Wang, Yunyu [1 ]
Wang, Lei [1 ]
Hu, Shunbo [1 ]
Wang, Xing [1 ]
Ge, Qingman [2 ]
机构
[1] Linyi Univ, Sch Informat Sci & Engn, Shandong 276000, Peoples R China
[2] Lunan Eye Hosp, Linyi 276000, Shandong, Peoples R China
关键词
Retinal vessels segmentation; Deep learning; Multi -scale feature fusion; U-NET;
D O I
10.1016/j.bspc.2024.105980
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting vascular structures from retinal fundus images plays a critical role in the early diagnosis and long-term treatment of ophthalmic diseases. Traditional manual segmentation of retinal vessels is a time-consuming process that demands a high level of expertise. In recent years, deep learning has made significant strides in retinal vessel segmentation, but it still faces certain challenges in fine vessel segmentation, such as the loss of spatial information resulting from multi-level feature extraction and the blurring of fine structural segmentation. To address these issues, we propose a multi-scale feature fusion segmentation network known as IMFF-Net. Specifically, we propose two fusion blocks in the IMFF-Net. Firstly, an Attention Pooling Feature Fusion (APF) block is proposed, which consists of Max Pooling, and Average Pooling and incorporates the SE block. This design effectively mitigates the problem of spatial information loss stemming from multiple pooling operations. Secondly, the Upsampling and Downsampling Feature Fusion block (UDFF) is proposed to weightedly merge the feature maps of each downsampling with the upsampling feature maps, thereby facilitating the precise segmentation of fine structures. To validate the performance of the proposed IMFF-Net, we conducted experiments on three retinal blood vessel segmentation datasets: DRIVE, STARE, and CHASE_DB1. IMFF-Net achieved outstanding results on the test set of these three public datasets with accuracies of 0.9621, 0.9707, and 0.9730, and sensitivities of 0.8575, 0.8634, and 0.8048, respectively. These results demonstrate the superior performance of IMFF-Net compared to the backbone network and other state-of-the-art methods. Our code is available at: https://gith ub.com/wangyunyuwyy/IMFF-Net.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] A Segmentation Algorithm of Colonoscopy Images Based on Multi-Scale Feature Fusion
    Yu, Jing
    Li, Zhengping
    Xu, Chao
    Feng, Bo
    ELECTRONICS, 2022, 11 (16)
  • [32] Liver segmentation network based on detail enhancement and multi-scale feature fusion
    Lu, Tinglan
    Qin, Jun
    Qin, Guihe
    Shi, Weili
    Zhang, Wentao
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [33] A feature aggregation and feature fusion network for retinal vessel segmentation
    Ni, Jiajia
    Sun, Haizhou
    Xu, Jinxin
    Liu, Jinhui
    Chen, Zhengming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85
  • [34] DEAF-Net: Detail-Enhanced Attention Feature Fusion Network for Retinal Vessel Segmentation
    Cai, Pengfei
    Li, Biyuan
    Sun, Gaowei
    Yang, Bo
    Wang, Xiuwei
    Lv, Chunjie
    Yan, Jun
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (01): : 496 - 519
  • [35] AFF-NET: AN ADAPTIVE FEATURE FUSION NETWORK FOR LIVER VESSEL SEGMENTATION FROM CT IMAGES
    Yuan, Yujia
    Xiao, Deqiang
    Yang, Shuo
    Li, Zongyu
    Geng, Haixiao
    Gu, Ying
    Yang, Jian
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [36] Regional perception and multi-scale feature fusion network for cardiac segmentation
    Lu, Chenggang
    Yuan, Jinli
    Xia, Kewen
    Guo, Zhitao
    Chen, Muxuan
    Yu, Hengyong
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (10)
  • [37] MSFFT-Net: A multi-scale feature fusion transformer network for underwater enhancement
    Wu, Zeju
    Chen, Kaiming
    Ji, Panxin
    Zhao, Haoran
    Sun, Xin
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2025, 107
  • [38] Retinal Vessel Segmentation In Fundus Images Using Convolutional Neural Network
    Chen, Chunhui
    Chuah, Joon Huang
    Ali, Raza
    2021 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE BIG DATA AND INTELLIGENT SYSTEMS (HPBD&IS), 2021, : 261 - 265
  • [39] Multi-scale Feature Fusion and Transformer Network for urban green space segmentation from high-resolution remote sensing images
    Cheng, Yong
    Wang, Wei
    Ren, Zhoupeng
    Zhao, Yingfen
    Liao, Yilan
    Ge, Yong
    Wang, Jun
    He, Jiaxin
    Gu, Yakang
    Wang, Yixuan
    Zhang, Wenjie
    Zhang, Ce
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 124
  • [40] Multi-Scale Feature Fusion Convolutional Neural Network for Concurrent Segmentation of Left Ventricle and Myocardium in Cardiac MR Images
    Qi, Lin
    Zhang, Haoran
    Cao, Xuehao
    Lyu, Xuyang
    Xu, Lisheng
    Yang, Benqiang
    Ou, Yangming
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2020, 10 (05) : 1023 - 1032