Analytical and approximate solutions for fractional systems of nonlinear differential equations

被引:1
作者
Abdl-Rahim, H. R. [1 ]
Ahmad, Hijaz [2 ]
Nofal, Taher A.
Ismail, G. M. [3 ,4 ]
机构
[1] Minist Higher Educ, Medium Valley Technol Coll, Ind Tech Inst, Sohag, Egypt
[2] Near East Univ, Operat Res Ctr Healthcare, TRNC Mersin 10, TR-99138 Nicosia, Turkiye
[3] Taif Univ, Coll Sci, Dept Math, POB 11099, Taif 21944, Saudi Arabia
[4] Islamic Univ Madinah, Fac Sci, Dept Math, Madinah 42351, Saudi Arabia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2023年 / 16卷 / 04期
关键词
Natural transform; Adomian decomposition method; Mathematical epidemic model; Analytical solution; NATURAL TRANSFORM;
D O I
10.29020/nybg.ejpam.v16i4.4864
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies the epidemic model via an efficient genius modern analytical ap-proximate technique named Natural Transform Adomian Decomposition Method (NTADM). It is based on Caputo fractional derivative. To demonstrate the effectiveness of the present method, the results are displayed in graphs. Accordingly, the NTADM can be very easily applied to other nonlinear models.
引用
收藏
页码:2632 / 2642
页数:11
相关论文
共 50 条
[41]   Analytical Solutions for Fractional Differential Equations Using a General Conformable Multiple Laplace Transform Decomposition Method [J].
Jia, Honggang .
SYMMETRY-BASEL, 2023, 15 (02)
[42]   Determination of the Correct Range of Physical Parameters in the Approximate Analytical Solutions of Nonlinear Equations Using the Adomian Decomposition Method [J].
Turkyilmazoglu, Mustafa .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :4019-4037
[43]   Determination of the Correct Range of Physical Parameters in the Approximate Analytical Solutions of Nonlinear Equations Using the Adomian Decomposition Method [J].
Mustafa Turkyilmazoglu .
Mediterranean Journal of Mathematics, 2016, 13 :4019-4037
[44]   An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method [J].
Ray, SS ;
Bera, RK .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 167 (01) :561-571
[45]   Revised Variational Iteration Method for Solving Systems of Nonlinear Fractional-Order Differential Equations [J].
Unlu, C. ;
Jafari, H. ;
Baleanu, D. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[46]   An Analytical Solution of Linear/Nonlinear Fractional-Order Partial Differential Equations and with New Existence and Uniqueness Conditions [J].
Verma, Pratibha ;
Kumar, Manoj .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (01) :47-55
[47]   An Analytical Solution of Linear/Nonlinear Fractional-Order Partial Differential Equations and with New Existence and Uniqueness Conditions [J].
Pratibha Verma ;
Manoj Kumar .
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 :47-55
[48]   Analytical approximate solutions for a general nonlinear resistor-nonlinear capacitor circuit model [J].
Fatoorehchi, Hooman ;
Abolghasemi, Hossein ;
Zarghami, Reza .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (19) :6021-6031
[49]   Approximate analytical solutions for the nonlinear free vibrations of composite beams in buckling [J].
Emam, Samir A. .
COMPOSITE STRUCTURES, 2013, 100 :186-194
[50]   A note on paper "a simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations" [J].
Xie, YX ;
Tang, JS .
ACTA PHYSICA SINICA, 2005, 54 (03) :1036-1038