INTEGRATING NASA'S GEDI AND LANDSAT 8 OLI DATA FOR REGIONAL ABOVEGROUND BIOMASS MAPPING IN FORESTED AREAS IMPACTED BY HURRICANE IAN IN FLORIDA

被引:0
|
作者
Karasinski, Mauro Alessandro [1 ]
Klauberg, Carine [1 ]
Donovan, Victoria M. [2 ]
Qiu, Jiangxiao [3 ]
Valle, Denis [1 ]
Vogel, Jason
Sharma, Ajay [2 ]
Atkins, Jeff W. [4 ]
Susaeta, Andres [1 ]
Schlickmann, Monique Bohora [1 ]
Xia, Jinyi [1 ]
Rocha, Kleydson Diego [1 ]
Leite, Rodrigo [1 ]
Silva, Carlos Alberto [1 ]
机构
[1] Univ Florida, Sch Forest Fisheries & Geomat Sci, Forest Biometr Remote Sensing & Artificial Intel, POB 110410, Gainesville, FL 32611 USA
[2] Univ Florida, West Florida Res & Educ Ctr, 5988 US 90,Bldg 4900, Milton, FL 32583 USA
[3] Univ Florida, Sch Forest, Sch Forest Fisheries & Geomat Sci, Ft Lauderdale Res & Educ Ctr, 3205 Coll Ave, Davie, FL 33314 USA
[4] USDA Forest Serv, Southern Res Stn, Savannah River Site,POB 700, New Ellenton, SC 29809 USA
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
美国食品与农业研究所;
关键词
GEDI; AGB; Random Forest; Modeling;
D O I
10.1109/IGARSS52108.2023.10281831
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The occurrence of hurricanes in the Southern U.S. is increasingly frequent and quantifying the damage caused to forests is crucial to assist in protection measures and understanding the dynamics of recovery. The aim of this study is to develop a data fusion framework based on NASA's GEDI (Global Ecosystem Dynamics Investigation) and Landsat 8 OLI for mapping aboveground biomass density (AGBD, Mg/ha) that can be further used to damage severity and recovery in forested ecosystems impacted by Hurricane Ian in Florida. We used GEDI level 4A and L8 data for calibrating a Random Forest (RF) for predicting and mapping AGBD at four-months pre-Hurricane Ian disturbance across areas impacted by Hurricane Ian. The RF model showed good performance with R-2 = 0.79, absolute and relative RMSE of 29.17 Mg/ha (64.27%) and Bias of -1.14 Mg/ha (2.66%), respectively. This research highlights methodological opportunities for fusing GEDI and L8 data streams toward improved AGB mapping and for assessing the impact of Hurricane Ian disturbance in Florida through data fusion.
引用
收藏
页码:3296 / 3298
页数:3
相关论文
共 5 条
  • [1] Mapping tree aboveground biomass and carbon in Omo Forest Reserve Nigeria using Landsat 8 OLI data
    Chenge, Iveren B.
    Osho, Johnson S. A.
    SOUTHERN FORESTS-A JOURNAL OF FOREST SCIENCE, 2018, 80 (04) : 341 - 350
  • [2] Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices
    Bhandari, Shes Kanta
    Nandy, Subrata
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (04) : 813 - 824
  • [3] Forest Aboveground Biomass Prediction by Integrating Terrestrial Laser Scanning Data, Landsat 8 OLI-Derived Forest Canopy Density and Spectral Indices
    Shes Kanta Bhandari
    Subrata Nandy
    Journal of the Indian Society of Remote Sensing, 2024, 52 : 813 - 824
  • [4] A Separable Bootstrap Variance Estimation Algorithm for Hierarchical Model-Based Inference of Forest Aboveground Biomass Using Data From NASA's GEDI and Landsat Missions
    Saarela, Svetlana
    Healey, Sean P.
    Yang, Zhiqiang
    Roald, Bjorn-Eirik
    Patterson, Paul L.
    Gobakken, Terje
    Naesset, Erik
    Hou, Zhengyang
    Mcroberts, Ronald E.
    Stahl, Goeran
    ENVIRONMETRICS, 2025, 36 (01)
  • [5] Fine-Resolution Forest Height Estimation by Integrating ICESat-2 and Landsat 8 OLI Data with a Spatial Downscaling Method for Aboveground Biomass Quantification
    Wang, Yingxuan
    Peng, Yuning
    Hu, Xudong
    Zhang, Penglin
    FORESTS, 2023, 14 (07):