Kibria-Lukman estimator for the Conway-Maxwell Poisson regression model: Simulation and applications

被引:13
作者
Abonazel, Mohamed R. [1 ]
Saber, Ashrakat Adel [1 ]
Awwad, Fuad A. [2 ]
机构
[1] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza, Egypt
[2] King Saud Univ, Coll Business Adm, Dept Quantitat Anal, POB 71115, Riyadh 11587, Saudi Arabia
关键词
Biased estimator; Conway-maxwell poisson model; Kibria-lukman estimator; Liu estimator; Multicollinearity; Ridge regression; RIDGE-REGRESSION; PERFORMANCE;
D O I
10.1016/j.sciaf.2023.e01553
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Conway-Maxwell Poisson (COMP) regression model is one of the count data models to account for over- and under-dispersion. In regression analysis, when the explanatory variables are correlated, when there is multicollinearity problem, this inflates the stan-dard error of the maximum likelihood estimates. The Kibria-Lukman estimator was pro-vided to handle the effect of multicollinearity in the linear regression model. Therefore, we proposed to extend this estimator to the COMP model to overcome this problem in the COMP model. The proposed estimator mitigates the adverse effect of multicollinearity on the standard error of the estimates. We used the mean squared error (MSE) as the per-formance assessment criterion to assess the performance of the proposed estimator and others. Also, we compared the proposed estimator theoretically with other estimators (the ridge and Liu estimators). We employed a simulation study and two life applications to study the performance of the proposed estimator. The simulation study and applications results showed the superiority of the proposed estimator because the MSE of the proposed estimator is smaller than the other estimators.(c) 2023 The Author(s). Published by Elsevier B.V. on behalf of African Institute of Mathematical Sciences / Next Einstein Initiative. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Abonazel M.R., 2022, CONCURR COMP-PRACT E, V34, P6979
[2]   Dawoud-Kibria Estimator for Beta Regression Model: Simulation and Application [J].
Abonazel, Mohamed R. ;
Dawoud, Issam ;
Awwad, Fuad A. ;
Lukman, Adewale F. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
[3]   A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application [J].
Abonazel, Mohamed R. ;
Algamal, Zakariya Yahya ;
Awwad, Fuad A. ;
Taha, Ibrahim M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 7
[4]   Beta ridge regression estimators: simulation and application [J].
Abonazel, Mohamed R. ;
Taha, Ibrahim M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4280-4292
[5]   On the performance of some biased estimators in the gamma regression model: simulation and applications [J].
Akram, Muhammad Nauman ;
Kibria, B. M. Golam ;
Abonazel, Mohamed R. ;
Afzal, Nimra .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (12) :2425-2447
[6]   Proposed methods in estimating the ridge regression parameter in Poisson regression model [J].
Alanaz, Mazin M. ;
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (02) :506-515
[7]   A new adjusted Liu estimator for the Poisson regression model [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Kibria, B. M. Golam .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20)
[8]  
Cameron A., 1998, REGRESSION ANAL COUN
[9]  
Conway R.W., 1961, J IND ENGINEERING, V12, P132
[10]   New Robust Estimators for Handling Multicollinearity and Outliers in the Poisson Model: Methods, Simulation and Applications [J].
Dawoud, Issam ;
Awwad, Fuad A. ;
Eldin, Elsayed Tag ;
Abonazel, Mohamed R. .
AXIOMS, 2022, 11 (11)