Semantics recalibration and detail enhancement network for real-time semantic segmentation

被引:0
作者
Mi, Aizhong [1 ]
Gao, Mingming [1 ]
Huo, Zhanqiang [1 ,3 ]
Qiao, Yingxu [2 ]
Chen, Jian [1 ]
Jia, Haiyang [1 ]
机构
[1] Henan Polytech Univ, Sch Software, Jiaozuo, Peoples R China
[2] Henan Polytech Univ, Coll Comp Sci & Technol, Jiaozuo, Peoples R China
[3] Henan Polytech Univ, Sch Software, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
computer vision; image processing; image segmentation; neural net architecture; neural nets; NEURAL-NETWORK;
D O I
10.1049/cvi2.12180
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Real-time semantic segmentation is a crucial technology in automatic driving scenarios, which needs to meet both high precision and real-time. The authors observe that learning complex correlations between object categories is vital in the real-time semantic segmentation task. Moreover, image spatial detail information plays an important role in small object segmentation and preserving edges and textures. A Semantics Recalibration and Detail Enhancement Network for real-time semantic segmentation based on BiSeNet V2 is proposed. On the one hand, a lightweight Semantics Recalibration module is designed to effectively extract global semantic contextual information, which combines pyramid segmentation and adaptive recalibration operations to learn the correlations between object categories. On the other hand, a Detail Enhancement module takes the feature maps of the shallow layers in the semantics branch as input and refines the feature maps to highlight the detail information. Finally, quantitative and qualitative analyses on Cityscapes and CamVid datasets demonstrate the effectiveness and generalisation of the proposed method.
引用
收藏
页码:461 / 472
页数:12
相关论文
共 38 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Segmentation and Recognition Using Structure from Motion Point Clouds [J].
Brostow, Gabriel J. ;
Shotton, Jamie ;
Fauqueur, Julien ;
Cipolla, Roberto .
COMPUTER VISION - ECCV 2008, PT I, PROCEEDINGS, 2008, 5302 :44-+
[4]   GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond [J].
Cao, Yue ;
Xu, Jiarui ;
Lin, Stephen ;
Wei, Fangyun ;
Hu, Han .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :1971-1980
[5]  
Chen L.-C., 2017, P IEEE C COMP VIS PA
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[9]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[10]   DSANet: Dilated spatial attention for real-time semantic segmentation in urban street scenes [J].
Elhassan, Mohammed A. M. ;
Huang, Chenxi ;
Yang, Chenhui ;
Munea, Tewodros Legesse .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 183