Deep Learning Semantic Segmentation for Land Use and Land Cover Types Using Landsat 8 Imagery

被引:26
作者
Boonpook, Wuttichai [1 ]
Tan, Yumin [2 ]
Nardkulpat, Attawut [1 ,3 ]
Torsri, Kritanai [4 ]
Torteeka, Peerapong [5 ]
Kamsing, Patcharin [6 ]
Sawangwit, Utane [5 ]
Pena, Jose [7 ]
Jainaen, Montri [8 ]
机构
[1] Srinakharinwirot Univ, Fac Social Sci, Dept Geog, Bangkok 10110, Thailand
[2] Beihang Univ, Sch Transportat Sci & Engn, Beijing 100191, Peoples R China
[3] Burapha Univ, Fac Geoinformat, Chon Buri 20131, Thailand
[4] Minist Higher Educ Sci Res & Innovat, Hydroinformat Inst, Bangkok 10900, Thailand
[5] Natl Astron Res Inst Thailand, Chiang Mai 50180, Thailand
[6] King Mongkuts Inst Technol, Int Acad Aviat Ind, Dept Aeronaut Engn, Air Space Control Optimizat & Management Lab, Bangkok 10520, Thailand
[7] Venezuela Space Agcy ABAE, Caracas 1010, Venezuela
[8] Kamphaeng Phet Rajabhat Univ, Fac Management Sci, Kamphaeng Phet 62000, Thailand
关键词
deep learning semantic segmentation; LoopNet; Landsat; 8; land use dataset; land use extraction; multispectral bands; Thailand; CLASSIFICATION; DATASET;
D O I
10.3390/ijgi12010014
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using deep learning semantic segmentation for land use extraction is the most challenging problem in medium spatial resolution imagery. This is because of the deep convolution layer and multiple levels of deep steps of the baseline network, which can cause a degradation problem in small land use features. In this paper, a deep learning semantic segmentation algorithm which comprises an adjustment network architecture (LoopNet) and land use dataset is proposed for automatic land use classification using Landsat 8 imagery. The experimental results illustrate that deep learning semantic segmentation using the baseline network (SegNet, U-Net) outperforms pixel-based machine learning algorithms (MLE, SVM, RF) for land use classification. Furthermore, the LoopNet network, which comprises a convolutional loop and convolutional block, is superior to other baseline networks (SegNet, U-Net, PSPnet) and improvement networks (ResU-Net, DeeplabV3+, U-Net++), with 89.84% overall accuracy and good segmentation results. The evaluation of multispectral bands in the land use dataset demonstrates that Band 5 has good performance in terms of extraction accuracy, with 83.91% overall accuracy. Furthermore, the combination of different spectral bands (Band 1-Band 7) achieved the highest accuracy result (89.84%) compared to individual bands. These results indicate the effectiveness of LoopNet and multispectral bands for land use classification using Landsat 8 imagery.
引用
收藏
页数:19
相关论文
共 33 条
[1]   The interrelationship between LST, NDVI, NDBI, and land cover change in a section of Lagos metropolis, Nigeria [J].
Alademomi, Alfred S. ;
Okolie, Chukwuma J. ;
Daramola, Olagoke E. ;
Akinnusi, Samuel A. ;
Adediran, Elias ;
Olanrewaju, Hamed O. ;
Alabi, Abiodun O. ;
Salami, Tosin J. ;
Odumosu, Joseph .
APPLIED GEOMATICS, 2022, 14 (02) :299-314
[2]  
Alem Abebaw, 2020, 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO), P903, DOI 10.1109/ICRITO48877.2020.9197824
[3]   A deep learning framework for land-use/land-cover mapping and analysis using multispectral satellite imagery [J].
Alhassan, Victor ;
Henry, Christopher ;
Ramanna, Sheela ;
Storie, Christopher .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12) :8529-8544
[4]   Urban Land Use and Land Cover Change Analysis Using Random Forest Classification of Landsat Time Series [J].
Amini, Saeid ;
Saber, Mohsen ;
Rabiei-Dastjerdi, Hamidreza ;
Homayouni, Saeid .
REMOTE SENSING, 2022, 14 (11)
[5]  
Anderson J.R., 1976, A land use and land cover classification system for use with remote sensor data, P1, DOI DOI 10.3133/PP964
[6]   Active fire detection in Landsat-8 imagery: A large-scale dataset and a deep-learning study [J].
de Almeida Pereira, Gabriel Henrique ;
Fusioka, Andre Minoro ;
Nassu, Bogdan Tomoyuki ;
Minetto, Rodrigo .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 :171-186
[7]  
Department of Land Development, LAND USE 2562 2564
[8]  
Du M, 2021, P ICIMTECH 21 6 INT, P1, DOI [10.1145/3465631.3465696, DOI 10.1145/3465631.3465696]
[9]   A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery [J].
Duro, Dennis C. ;
Franklin, Steven E. ;
Dube, Monique G. .
REMOTE SENSING OF ENVIRONMENT, 2012, 118 :259-272
[10]   The investigation of spatiotemporal variations of land surface temperature based, on land use changes using NDVI in southwest of Iran [J].
Fathizad, Hassan ;
Tazeh, Mandi ;
Kalantari, Saeideh ;
Shojaei, Saeed .
JOURNAL OF AFRICAN EARTH SCIENCES, 2017, 134 :249-256