Missing Outcome Data in Epidemiologic Studies

被引:15
作者
Cole, Stephen R. [1 ]
Zivich, Paul N. [1 ]
Edwards, Jessie K. [1 ]
Ross, Rachael K. [1 ]
Shook-Sa, Bonnie E. [2 ]
Price, Joan T. [3 ]
Stringer, Jeffrey S. A. [3 ]
机构
[1] Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Chapel Hill, NC USA
[2] Univ North Carolina Chapel Hill, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC USA
[3] Univ N Carolina, Sch Med, Dept Obstet & Gynecol, Chapel Hill, NC USA
基金
美国国家卫生研究院;
关键词
bias; error; generalized computation; imputation; missing data; precision; CAUSAL INFERENCE;
D O I
10.1093/aje/kwac179
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 20 条
  • [1] Allison PD, 2010, HANDBOOK OF SURVEY RESEARCH, 2ND EDITION, P631
  • [2] [Anonymous], 1999, Statistical Models in Epidemiology: The Environment and Clinical Trials
  • [3] Handling missing data in RCTs; a review of the top medical journals
    Bell, Melanie L.
    Fiero, Mallorie
    Horton, Nicholas J.
    Hsu, Chiu-Hsieh
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
  • [4] Constructing inverse probability weights for marginal structural models
    Cole, Stephen R.
    Hernan, Miguel A.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2008, 168 (06) : 656 - 664
  • [5] The Consistency Statement in Causal Inference A Definition or an Assumption?
    Cole, Stephen R.
    Frangakis, Constantine E.
    [J]. EPIDEMIOLOGY, 2009, 20 (01) : 3 - 5
  • [6] All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework
    Edwards, Jessie K.
    Cole, Stephen R.
    Westreich, Daniel
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (04) : 1452 - 1459
  • [7] Missing Data A Systematic Review of How They Are Reported and Handled
    Eekhout, Iris
    de Boer, Michiel R.
    Twisk, Jos W. R.
    de Vet, Henrica C. W.
    Heymans, Martijn W.
    [J]. EPIDEMIOLOGY, 2012, 23 (05) : 729 - 732
  • [8] 1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE
    EFRON, B
    [J]. ANNALS OF STATISTICS, 1979, 7 (01) : 1 - 26
  • [9] Gill R.D., 1997, Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, Lecture Notes in Statistics, P255, DOI DOI 10.1007/978-1-4684-6316-3_14
  • [10] A critical look at methods for handling missing covariates in epidemiologic regression analyses
    Greenland, S
    Finkle, WD
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) : 1255 - 1264