On the moduli of hypersurfaces in toric orbifolds

被引:2
作者
Bunnett, Dominic [1 ]
机构
[1] TU Berlin, Inst Math, Berlin, Germany
关键词
moduli theory; geometric invariant theory; toric varieties;
D O I
10.1017/S0013091524000166
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and study the moduli of stable hypersurfaces in toric orbifolds. Let X be a projective toric orbifold and $\alpha \in \operatorname{Cl}(X)$ an ample class. The moduli space is constructed as a quotient of the linear system $|\alpha|$ by $G = \operatorname{Aut}(X)$. Since the group G is non-reductive in general, we use new techniques of non-reductive geometric invariant theory. Using the A-discriminant of Gelfand, Kapranov and Zelevinsky, we prove semistability for quasismooth hypersurfaces of toric orbifolds. Further, we prove the existence of a quasi-projective moduli space of quasismooth hypersurfaces in a weighted projective space when the weighted projective space satisfies a certain condition. We also discuss how to proceed when this condition is not satisfied. We prove that the automorphism group of a quasismooth hypersurface of weighted projective space is finite excluding some low degrees.
引用
收藏
页码:577 / 616
页数:40
相关论文
共 31 条
[11]   Geometric invariant theory for graded unipotent groups and applications [J].
Berczi, Gergely ;
Doran, Brent ;
Hawes, Thomas ;
Kirwan, Frances .
JOURNAL OF TOPOLOGY, 2018, 11 (03) :826-855
[12]  
Cox D., 1995, J. Algebraic Geom, V4, P17
[13]  
Cox DA, 2014, J ALGEBRAIC GEOM, V23, P393
[14]  
Cox David A., 2011, Toric varieties, V124, DOI DOI 10.1090/GSM/124
[15]  
Craw A., 2008, ARXIV
[16]  
DOLGACHEV I, 1982, LECT NOTES MATH, V956, P34
[17]  
Dolgachev I., 2003, LECT INVARIANT THEOR, P296
[18]  
Doran B, 2007, PURE APPL MATH Q, V3, P61
[19]  
Esnault H., 1992, DMV SEMINAR, V20
[20]  
Gelfand I.M., 2008, MODERN BIRKHAUSER CL