Efficient electrochemical conversion of CO2 into formic acid using colloidal NiCo@rGO catalyst

被引:13
|
作者
Arsalan, Muhammad [1 ]
Ewis, Dina [1 ]
Ba-Abbad, Muneer M. [1 ]
Khaled, Mazen [2 ]
Amhamed, Abdulkarem [3 ]
El-Naas, Muftah H. [1 ]
机构
[1] Qatar Univ, Gas Proc Ctr, Coll Engn, POB 2713, Doha, Qatar
[2] Qatar Univ, Coll Arts & Sci, Dept Chem & Earth Sci, Doha POB 2713, Qatar
[3] Hamad Bin Khalifa Univ, Qatar Environm & Energy Res Inst, Doha, Qatar
关键词
Electrochemical conversion; NiCo@rGO; CO2; reduction; Formic acid; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; REDUCTION; FORMATE; OXIDE; HYDROGEN;
D O I
10.1016/j.rineng.2024.101824
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A simple approach was used to synthesize a catalyst based on colloidal NiCo with rGO support. The catalyst was uniformly deposited on acid -treated Sn foil using drop -casting method. The prepared NiCo@rGO catalyst was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The XRD measurements confirmed the development of a homogenously immersed structure with a specific NiCo composition. The different ratios of Ni and Co in the NiCo@rGO catalyst were further confirmed by XPS and SEM-EDX. The catalyst was tested for the electrochemical reduction of CO2 to produce formic acid (HCOOH) and resulted in a significantly higher faradaic efficiency at -50 mA current compared to the simple Co nanoparticle, rGO, Sn foil, Ni nanoparticles, and NiCo composite. The colloidal NiCo bimetallic structure, combined with the rGO support on the treated Sn foil, played an important role in enhancing the catalytic activity and selectivity towards formic acid. When comparing the NiCo@rGO catalyst with other catalysts, especially Ni, Co, Sn foil, NiCo, and rGO, the NiCo@rGO catalyst showed superior CO2 electrochemical chemical reduction performance. The results suggest that the synergic effect of combining Ni with Co along with using acid -treated Sn foil as a support is responsible for the high activity towards formic acid production. The experimental results demonstrated the formation of formic acid with low energy consumption and good faradic efficiency.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design
    Yang, Hongzhou
    Kaczur, Jerry J.
    Sajjad, Syed Dawar
    Masel, Richard, I
    JOURNAL OF CO2 UTILIZATION, 2020, 42
  • [22] Efficient hydrogenation of CO2 to formic acid over amorphous NiRuB catalysts
    He, Jiehong
    Chang, Shaoshuai
    Du, Haoran
    Jiang, Bo
    Yu, Wenzhao
    Wang, Zhenwu
    Chu, Weiwei
    Han, Lanfang
    Zhu, Jian
    Li, Hexing
    JOURNAL OF CO2 UTILIZATION, 2021, 54
  • [23] Novel artificial ionic cofactors for efficient electro-enzymatic conversion of CO2 to formic acid
    Zhang, Zhibo
    Vasiliu, Tudor
    Li, Fangfang
    Laaksonen, Aatto
    Zhang, Xiangping
    Mocci, Francesca
    Ji, Xiaoyan
    JOURNAL OF CO2 UTILIZATION, 2022, 60
  • [24] Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid
    Zhu Qing-Gong
    Sun Xiao-Fu
    Kang Xin-Chen
    Ma Jun
    Qian Qing-Li
    Han Bu-Xing
    ACTA PHYSICO-CHIMICA SINICA, 2016, 32 (01) : 261 - 266
  • [25] Hydrogenation of CO2 to formic acid over efficient heterogeneous ruthenium oxide supported on cubic phase zirconium oxide catalyst
    Bankar, Balasaheb D.
    Naikwadi, Dhanaji R.
    Biradar, Ankush, V
    APPLIED SURFACE SCIENCE, 2023, 631
  • [26] Growth and Electrochemical Study of Bismuth Nanodendrites as an Efficient Catalyst for CO2 Reduction
    Sabouhanian, Negar
    Lipkowski, Jacek
    Chen, Aicheng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 21895 - 21904
  • [27] Photoanode driven photoelectrocatalytic system for CO2 reduction to formic acid by using CoOx cathode
    Pan, Donglai
    Ye, Xingyu
    Cao, Yingnan
    Zhu, Sai
    Chen, Xiaofeng
    Chen, Ming
    Zhang, Dieqing
    Li, Guisheng
    APPLIED SURFACE SCIENCE, 2020, 511 (511)
  • [28] Silyl Cation Mediated Conversion of CO2 into Benzoic Acid, Formic Acid, and Methanol
    Schaefer, Andre
    Saak, Wolfgang
    Haase, Detlev
    Mueller, Thomas
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (12) : 2981 - 2984
  • [29] Development of a photocatalytic method to convert CO2 into formic acid with fulvic acid complex
    Zoltan, Kontos
    ENERGY & ENVIRONMENT, 2025, 36 (02) : 925 - 935
  • [30] A Prospective Life Cycle Assessment of Electrochemical CO2 Reduction to Selective Formic Acid and Ethylene
    Ai, Ling
    Ng, Sue-Faye
    Ong, Wee-Jun
    CHEMSUSCHEM, 2022, 15 (19)