Genome-Wide Identification and Molecular Characterization of Core ABA Signaling Components Under Abiotic Stresses and During Development in Chickpea

被引:1
|
作者
Kamali, Saravanappriyan [1 ]
Sonkar, Kamankshi [1 ]
Ankit, Ankit [1 ]
Deepika, Deepika [1 ]
Sharma, Ankita [1 ]
Singh, Amarjeet [1 ,2 ]
机构
[1] Natl Inst Plant Genome Res, New Delhi 110067, India
[2] Jawaharlal Nehru Univ, Sch Life Sci, New Delhi 110067, India
关键词
ABA; Abiotic stress; Signaling; Chickpea; Gene expression; Development; 2C PROTEIN PHOSPHATASES; ANION CHANNEL SLAC1; SNRK2 GENE FAMILY; ABSCISIC-ACID; SEED-GERMINATION; HYPEROSMOTIC STRESS; DROUGHT RESISTANCE; STOMATAL APERTURE; COLD-STRESS; KINASES;
D O I
10.1007/s00344-023-11165-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abscisic acid (ABA) signaling is vital for plant's response to abiotic stresses and development. Core components of ABA signaling include ABA receptors PYR/PYL/RCAR, group-A PP2Cs (PP2C-As) and SnRK2 serine/threonine kinases. These have been well studied in Arabidopsis, but their knowledge in the legume crop chickpea is missing. Here, we identified 8 PYLs, 11 PP2C-As and 13 SnRK2s genes in the chickpea genome. Gene duplication events have been found to drive their evolution and expansion in chickpea. Protein homology modeling revealed three-dimensional structure, and arrangements of alpha-helix, beta-sheets and p-loops in respective families. In-planta subcellular localization analysis revealed that CaPYL3 and CaPYL5 proteins were localized at the plasma membrane, and CaPP2CA-1 and CaSnRK2.7 were localized in the cytoplasm and the nucleus. RNA sequencing data analysis indicated the regulatory role of CaPYLs, CaPP2C-As and CaSnRK2s in developmental stages particularly, stages of early embryogenesis to seed maturity. Through RT-qPCR analysis drought, salt and ABA responsive CaPYL, CaPP2C-A and CaSnRK2 genes, which might regulate abiotic stress response in chickpea were identified. Importantly, key genes like CaPYL4, CaPP2C-A4, CaPP2C-A11 and CaSnRK2.9 with overlapping expression in drought, ABA and seed development were identified, which might determine chickpea crop yield. In-silico interaction analysis revealed specific and overlapping interaction among ABA signaling proteins indicating their functional relevance. Overall, core ABA signaling components are crucial for abiotic stress tolerance and development in chickpea. These genes will be functionally validated in the future and will be utilized to generate abiotic stress resilience and high-yielding chickpea varieties.
引用
收藏
页码:1546 / 1569
页数:24
相关论文
共 50 条
  • [41] Genome-wide identification and characterization of OSCA genes in white clover revealing their function in response to abiotic stresses
    Zhu, Xiaoyue
    Li, Manman
    Li, Shuaixian
    Zhao, Xueqing
    Zhang, Tianxiang
    Guo, Meiyan
    Guo, Changhong
    Shu, Yongjun
    SOUTH AFRICAN JOURNAL OF BOTANY, 2025, 178 : 18 - 27
  • [42] Genome-Wide Identification of the Remorin Gene Family in Poplar and Their Responses to Abiotic Stresses
    Li, Zihui
    Wang, Hang
    Li, Chuanqi
    Liu, Huimin
    Luo, Jie
    LIFE-BASEL, 2024, 14 (10):
  • [43] Genome-Wide Identification and Characterization of NAC Family in Hibiscus hamabo Sieb. et Zucc. under Various Abiotic Stresses
    Wang, Zhiquan
    Ni, Longjie
    Liu, Dina
    Fu, Zekai
    Hua, Jianfeng
    Lu, Zhiguo
    Liu, Liangqin
    Yin, Yunlong
    Li, Huogen
    Gu, Chunsun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [44] Genome-Wide Identification, Characterization, and Expression Analysis under Abiotic Stresses of the UBP Gene Family in Rice (Oryza sativa L.)
    Zou, Xiaoxiao
    Li, Yongliang
    Yin, Huangping
    Xu, Jiajin
    Li, Zeqi
    Jiang, Shuai
    Chen, Fenglin
    Li, You
    Xiao, Wenjun
    Liu, Shucan
    Guo, Xinhong
    AGRONOMY-BASEL, 2023, 13 (11):
  • [45] Genome-wide identification and characterization of ADH gene family and the expression under different abiotic stresses in tomato (Solanum lycopersicum L.)
    Zhu, Qingdong
    Han, Yading
    Yang, Wentao
    Zhu, Hang
    Li, Guangtong
    Xu, Ke
    Long, Mingxin
    FRONTIERS IN GENETICS, 2023, 14
  • [46] Genome-wide identification and characterization of R2R3-MYB family in Hypericum perforatum under diverse abiotic stresses
    Zhou, Wen
    Zhang, Qian
    Sun, Yan
    Yang, Lei
    Wang, Zhezhi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 145 : 341 - 354
  • [47] Genome-Wide Identification and Characterization of the Salvia miltiorrhiza Histone Deacetylase (HDAC) Family in Response to Multiple Abiotic Stresses
    Chen, Junyu
    Ying, Yuxin
    Yao, Lingtiao
    Xu, Zhangting
    Yu, Zhenming
    Kai, Guoyin
    PLANTS-BASEL, 2024, 13 (05):
  • [48] Genome-wide identification of the AAT gene family in quinoa and analysis of its expression pattern under abiotic stresses
    Li, Hanxue
    Jiang, Chunhe
    Liu, Junna
    Zhang, Ping
    Li, Li
    Li, Rongbo
    Huang, Liubin
    Wang, Xuqin
    Jiang, Guofei
    Bai, Yutao
    Zhang, Lingyuan
    Qin, Peng
    BMC GENOMICS, 2025, 26 (01):
  • [49] Genome-Wide Identification of VQ Motif-Containing Proteins and their Expression Profiles Under Abiotic Stresses in Maize
    Song, Weibin
    Zhao, Haiming
    Zhang, Xiangbo
    Lei, Lei
    Lai, Jinsheng
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [50] Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
    Han, Ailing
    Xu, Zhengyuan
    Cai, Zhenyu
    Zheng, Yuling
    Chen, Mingjiong
    Wu, Liyuan
    Shen, Qiufang
    PLANTS-BASEL, 2024, 13 (24):