Genome-Wide Identification and Molecular Characterization of Core ABA Signaling Components Under Abiotic Stresses and During Development in Chickpea

被引:1
|
作者
Kamali, Saravanappriyan [1 ]
Sonkar, Kamankshi [1 ]
Ankit, Ankit [1 ]
Deepika, Deepika [1 ]
Sharma, Ankita [1 ]
Singh, Amarjeet [1 ,2 ]
机构
[1] Natl Inst Plant Genome Res, New Delhi 110067, India
[2] Jawaharlal Nehru Univ, Sch Life Sci, New Delhi 110067, India
关键词
ABA; Abiotic stress; Signaling; Chickpea; Gene expression; Development; 2C PROTEIN PHOSPHATASES; ANION CHANNEL SLAC1; SNRK2 GENE FAMILY; ABSCISIC-ACID; SEED-GERMINATION; HYPEROSMOTIC STRESS; DROUGHT RESISTANCE; STOMATAL APERTURE; COLD-STRESS; KINASES;
D O I
10.1007/s00344-023-11165-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abscisic acid (ABA) signaling is vital for plant's response to abiotic stresses and development. Core components of ABA signaling include ABA receptors PYR/PYL/RCAR, group-A PP2Cs (PP2C-As) and SnRK2 serine/threonine kinases. These have been well studied in Arabidopsis, but their knowledge in the legume crop chickpea is missing. Here, we identified 8 PYLs, 11 PP2C-As and 13 SnRK2s genes in the chickpea genome. Gene duplication events have been found to drive their evolution and expansion in chickpea. Protein homology modeling revealed three-dimensional structure, and arrangements of alpha-helix, beta-sheets and p-loops in respective families. In-planta subcellular localization analysis revealed that CaPYL3 and CaPYL5 proteins were localized at the plasma membrane, and CaPP2CA-1 and CaSnRK2.7 were localized in the cytoplasm and the nucleus. RNA sequencing data analysis indicated the regulatory role of CaPYLs, CaPP2C-As and CaSnRK2s in developmental stages particularly, stages of early embryogenesis to seed maturity. Through RT-qPCR analysis drought, salt and ABA responsive CaPYL, CaPP2C-A and CaSnRK2 genes, which might regulate abiotic stress response in chickpea were identified. Importantly, key genes like CaPYL4, CaPP2C-A4, CaPP2C-A11 and CaSnRK2.9 with overlapping expression in drought, ABA and seed development were identified, which might determine chickpea crop yield. In-silico interaction analysis revealed specific and overlapping interaction among ABA signaling proteins indicating their functional relevance. Overall, core ABA signaling components are crucial for abiotic stress tolerance and development in chickpea. These genes will be functionally validated in the future and will be utilized to generate abiotic stress resilience and high-yielding chickpea varieties.
引用
收藏
页码:1546 / 1569
页数:24
相关论文
共 50 条
  • [31] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    BIOCELL, 2022, 46 (08) : 1947 - 1958
  • [32] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    GENES, 2023, 14 (06)
  • [33] Genome-Wide Identification of GLK Family Genes in Phoebe bournei and Their Transcriptional Analysis Under Abiotic Stresses
    Lian, Yiran
    Peng, Liang
    Shi, Xinying
    Zheng, Qiumian
    Fan, Dunjin
    Feng, Zhiyi
    Liu, Xiaomin
    Ma, Huanhuan
    Cao, Shijiang
    Chang, Weiyin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (06)
  • [34] Genome-wide identification of WRKY genes and their expression profiles under different abiotic stresses in Elaeis guineensis
    Xiao, Yong
    Zhou, Lixia
    Lei, Xintao
    Cao, Hongxing
    Wang, Yong
    Dou, Yajing
    Tang, Wenqi
    Xia, Wei
    PLOS ONE, 2017, 12 (12):
  • [35] Genome-wide identification of the PYL gene family and expression of PYL genes under abiotic stresses in Chinese
    Gao, X. Q.
    Qiao, Y. L.
    Lyu, J.
    Xiao, X. M.
    Hu, L. L.
    Yu, J. H.
    BIOLOGIA PLANTARUM, 2022, 66 : 322 - 332
  • [36] Genome-Wide Identification and Characterization of Soybean GmLOR Gene Family and Expression Analysis in Response to Abiotic Stresses
    Fang, Yisheng
    Cao, Dong
    Yang, Hongli
    Guo, Wei
    Ouyang, Wenqi
    Chen, Haifeng
    Shan, Zhihui
    Yang, Zhonglu
    Chen, Shuilian
    Li, Xia
    Chen, Limiao
    Zhou, Xinan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (22)
  • [37] Genome-Wide Identification of the Remorin Gene Family in Poplar and Their Responses to Abiotic Stresses
    Li, Zihui
    Wang, Hang
    Li, Chuanqi
    Liu, Huimin
    Luo, Jie
    LIFE-BASEL, 2024, 14 (10):
  • [38] The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress
    Wei Hu
    Yan Yan
    Haitao Shi
    Juhua Liu
    Hongxia Miao
    Weiwei Tie
    Zehong Ding
    XuPo Ding
    Chunlai Wu
    Yang Liu
    Jiashui Wang
    Biyu Xu
    Zhiqiang Jin
    BMC Plant Biology, 17
  • [39] Genome-wide identification, characterization of expansin gene family of banana and their expression pattern under various stresses
    Backiyarani, Suthanthiram
    Anuradha, Chelliah
    Thangavelu, Raman
    Chandrasekar, Arumugam
    Renganathan, Baratvaj
    Subeshkumar, Parasuraman
    Giribabu, Palaniappan
    Muthusamy, Muthusamy
    Uma, Subbaraya
    3 BIOTECH, 2022, 12 (04)
  • [40] Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana
    Hu, Wei
    Hou, Xiaowan
    Huang, Chao
    Yan, Yan
    Tie, Weiwei
    Ding, Zehong
    Wei, Yunxie
    Liu, Juhua
    Miao, Hongxia
    Lu, Zhiwei
    Li, Meiying
    Xu, Biyu
    Jin, Zhiqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (08) : 19728 - 19751