Genome-Wide Identification and Molecular Characterization of Core ABA Signaling Components Under Abiotic Stresses and During Development in Chickpea

被引:1
|
作者
Kamali, Saravanappriyan [1 ]
Sonkar, Kamankshi [1 ]
Ankit, Ankit [1 ]
Deepika, Deepika [1 ]
Sharma, Ankita [1 ]
Singh, Amarjeet [1 ,2 ]
机构
[1] Natl Inst Plant Genome Res, New Delhi 110067, India
[2] Jawaharlal Nehru Univ, Sch Life Sci, New Delhi 110067, India
关键词
ABA; Abiotic stress; Signaling; Chickpea; Gene expression; Development; 2C PROTEIN PHOSPHATASES; ANION CHANNEL SLAC1; SNRK2 GENE FAMILY; ABSCISIC-ACID; SEED-GERMINATION; HYPEROSMOTIC STRESS; DROUGHT RESISTANCE; STOMATAL APERTURE; COLD-STRESS; KINASES;
D O I
10.1007/s00344-023-11165-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Abscisic acid (ABA) signaling is vital for plant's response to abiotic stresses and development. Core components of ABA signaling include ABA receptors PYR/PYL/RCAR, group-A PP2Cs (PP2C-As) and SnRK2 serine/threonine kinases. These have been well studied in Arabidopsis, but their knowledge in the legume crop chickpea is missing. Here, we identified 8 PYLs, 11 PP2C-As and 13 SnRK2s genes in the chickpea genome. Gene duplication events have been found to drive their evolution and expansion in chickpea. Protein homology modeling revealed three-dimensional structure, and arrangements of alpha-helix, beta-sheets and p-loops in respective families. In-planta subcellular localization analysis revealed that CaPYL3 and CaPYL5 proteins were localized at the plasma membrane, and CaPP2CA-1 and CaSnRK2.7 were localized in the cytoplasm and the nucleus. RNA sequencing data analysis indicated the regulatory role of CaPYLs, CaPP2C-As and CaSnRK2s in developmental stages particularly, stages of early embryogenesis to seed maturity. Through RT-qPCR analysis drought, salt and ABA responsive CaPYL, CaPP2C-A and CaSnRK2 genes, which might regulate abiotic stress response in chickpea were identified. Importantly, key genes like CaPYL4, CaPP2C-A4, CaPP2C-A11 and CaSnRK2.9 with overlapping expression in drought, ABA and seed development were identified, which might determine chickpea crop yield. In-silico interaction analysis revealed specific and overlapping interaction among ABA signaling proteins indicating their functional relevance. Overall, core ABA signaling components are crucial for abiotic stress tolerance and development in chickpea. These genes will be functionally validated in the future and will be utilized to generate abiotic stress resilience and high-yielding chickpea varieties.
引用
收藏
页码:1546 / 1569
页数:24
相关论文
共 50 条
  • [1] Genome-wide identification, phylogenetic, structural and functional evolution of the core components of ABA signaling in plant species: a focus on rice
    Lan, Yanhong
    Song, Yao
    Liu, Mengjia
    Luo, Dening
    PLANTA, 2024, 260 (03)
  • [2] The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress
    Hu, Wei
    Yan, Yan
    Shi, Haitao
    Liu, Juhua
    Miao, Hongxia
    Tie, Weiwei
    Ding, Zehong
    Ding, XuPo
    Wu, Chunlai
    Liu, Yang
    Wang, Jiashui
    Xu, Biyu
    Jin, Zhiqiang
    BMC PLANT BIOLOGY, 2017, 17
  • [3] Genome-Wide Identification of the ABA Receptors Genes and Their Response to Abiotic Stress in Apple
    Hou, Hongmin
    Lv, Lingling
    Huo, Heqiang
    Dai, Hongyi
    Zhang, Yugang
    PLANTS-BASEL, 2020, 9 (08): : 1 - 18
  • [4] Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses
    Muhammad Shaban
    Muhammad Mahmood Ahmed
    Heng Sun
    Abid Ullah
    Longfu Zhu
    BMC Genomics, 19
  • [5] Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses
    Shaban, Muhammad
    Ahmed, Muhammad Mahmood
    Sun, Heng
    Ullah, Abid
    Zhu, Longfu
    BMC GENOMICS, 2018, 19
  • [6] Genome-Wide Identification of BrCMF Genes in Brassica rapa and Their Expression Analysis under Abiotic Stresses
    Chen, Luhan
    Wu, Xiaoyu
    Zhang, Meiqi
    Yang, Lin
    Ji, Zhaojing
    Chen, Rui
    Cao, Yunyun
    Huang, Jiabao
    Duan, Qiaohong
    PLANTS-BASEL, 2024, 13 (08):
  • [7] Genome-Wide Identification and Expression Analysis of the CaNAC Family Members in Chickpea during Development, Dehydration and ABA Treatments
    Van Ha, Chien
    Esfahani, Maryam Nasr
    Watanabe, Yasuko
    Uyen Thi Tran
    Suiieman, Saad
    Mochida, Keiichi
    Van Nguyen, Dong
    Tran, Lam-Son Phan
    PLOS ONE, 2014, 9 (12):
  • [8] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Haomiao Cheng
    Zhanru Shao
    Chang Lu
    Delin Duan
    BMC Plant Biology, 21
  • [9] Genome-wide identification of chitinase genes in Thalassiosira pseudonana and analysis of their expression under abiotic stresses
    Cheng, Haomiao
    Shao, Zhanru
    Lu, Chang
    Duan, Delin
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [10] Genome-wide identification and characterization of ABA receptorPYLgene family in rice
    Yadav, Shashank Kumar
    Santosh Kumar, Vinjamuri Venkata
    Verma, Rakesh Kumar
    Yadav, Pragya
    Saroha, Ankit
    Wankhede, Dhammaprakash Pandhari
    Chaudhary, Bhupendra
    Chinnusamy, Viswanathan
    BMC GENOMICS, 2020, 21 (01)