Dynamic graph attention networks for point cloud landslide segmentation

被引:3
|
作者
Wei, Ruilong [1 ]
Ye, Chengming [1 ]
Ge, Yonggang [2 ]
Li, Yao [3 ]
Li, Jonathan [4 ,5 ]
机构
[1] Chengdu Univ Technol, Key Lab Earth Explorat & Informat Technol, Minist Educ, Chengdu 610059, Peoples R China
[2] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
[3] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[4] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Point cloud; Deep learning; Landslide segmentation; Remote sensing;
D O I
10.1016/j.jag.2023.103542
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate landslide segmentation is crucial for obtaining damage information in disaster mitigation and relief efforts. This study aims to develop a deep learning network for accurate point cloud landslide segmentation. The proposed dynamic graph attention network (DGA-Net) has four steps. First, the down-sampling and neighbor search are applied to generate the samples that effectively represent the relevant landslide information. Second, the edge features of neighbor points are constructed based on graph structure to extract and enhance point cloud features. Third, the attention mechanism assigns adaptive weights to edge features and aggregates them into new point features. Fourth, the graph structure, edge features, and attention weights are dynamically updated through the hierarchical structures, which enable an expanded receptive field. In the upper reach of the Jinsha River, point clouds were prepared for landslide segmentation. The controlled experiments were designed for effectiveness evaluation. The results reported that proposed DGA-Net achieved the highest mean Intersection over Union (mIoU) of 0.743 and F1-score of 0.786, which was over 6.7% and 3.6% mIoU higher than shallow machine learning and other deep learning models. Besides, we analyzed the effect of super parameters in sampling strategy and the segmentation threshold in prediction stage on the model performance. The results showed that the samples with suitable sampling diameters and appropriate neighboring points are beneficial for landslide segmentation, and using optimal thresholds to segment stacked multiple prediction values can improve mIoU by 6%. Furthermore, the visualized feature maps revealed that the proposed model can index landslide points in feature space, which is beneficial to construct graph structures and use attention to enhance features. Comparative studies on the above experiments proved the superiority of the proposed method for landslide segmentation. We hope that our method and research results can contribute to post-disaster relief efforts.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] GA-NET: Global Attention Network for Point Cloud Semantic Segmentation
    Deng, Shuang
    Dong, Qiulei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1300 - 1304
  • [42] Point cloud instance segmentation based on attention mechanism KNN and ASIS module
    Xiang X.-Y.
    Wang L.
    Zong W.-P.
    Li G.-Y.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (05): : 875 - 882
  • [43] Enhanced Point Cloud Segmentation Method Using Positional Encoding and Channel Attention
    Zhang, Wei
    Zeng, Zhilong
    Fang, Qi
    Song, Jie
    Gui, Guan
    Wang, Shenghuai
    Wang, Chen
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (04)
  • [44] IAGC: Interactive Attention Graph Convolution Network for Semantic Segmentation of Point Clouds in Building Indoor Environment
    Zhai, Ruoming
    Zou, Jingui
    He, Yifeng
    Meng, Liyuan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (03)
  • [45] PGCNet: patch graph convolutional network for point cloud segmentation of indoor scenes
    Sun, Yuliang
    Miao, Yongwei
    Chen, Jiazhou
    Pajarola, Renato
    VISUAL COMPUTER, 2020, 36 (10-12) : 2407 - 2418
  • [46] RG-GCN: A Random Graph Based on Graph Convolution Network for Point Cloud Semantic Segmentation
    Zeng, Ziyin
    Xu, Yongyang
    Xie, Zhong
    Wan, Jie
    Wu, Weichao
    Dai, Wenxia
    REMOTE SENSING, 2022, 14 (16)
  • [47] Ganet: graph attention based Terracotta Warriors point cloud completion network
    Gao, Jian
    Zhang, Yuhe
    Shiqin, Gaoxue
    Zhou, Pengbo
    Wen, Yue
    Geng, Guohua
    HERITAGE SCIENCE, 2024, 12 (01):
  • [48] Two-stage graph matching point cloud registration method based on graph attention network
    Guo, Jiacheng
    Liu, Xuejun
    Zhang, Shuo
    Yan, Yong
    Sha, Yun
    Jiang, Yinan
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)
  • [49] DenseKPNET: Dense Kernel Point Convolutional Neural Networks for Point Cloud Semantic Segmentation
    Li, Yong
    Li, Xu
    Zhang, Zhenxin
    Shuang, Feng
    Lin, Qi
    Jiang, Jincheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Point Cloud Segmentation for Pipelines in Industrial Facilities Using Recurrent Networks
    Shigeta K.
    Nagumo T.
    Masuda H.
    Computer-Aided Design and Applications, 2023, 20 (04): : 786 - 796