Dynamic graph attention networks for point cloud landslide segmentation

被引:3
|
作者
Wei, Ruilong [1 ]
Ye, Chengming [1 ]
Ge, Yonggang [2 ]
Li, Yao [3 ]
Li, Jonathan [4 ,5 ]
机构
[1] Chengdu Univ Technol, Key Lab Earth Explorat & Informat Technol, Minist Educ, Chengdu 610059, Peoples R China
[2] Chinese Acad Sci, Inst Mt Hazards & Environm, Chengdu 610041, Peoples R China
[3] Tsinghua Univ, State Key Lab Hydrosci & Engn, Beijing 100084, Peoples R China
[4] Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON N2L 3G1, Canada
[5] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Point cloud; Deep learning; Landslide segmentation; Remote sensing;
D O I
10.1016/j.jag.2023.103542
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Accurate landslide segmentation is crucial for obtaining damage information in disaster mitigation and relief efforts. This study aims to develop a deep learning network for accurate point cloud landslide segmentation. The proposed dynamic graph attention network (DGA-Net) has four steps. First, the down-sampling and neighbor search are applied to generate the samples that effectively represent the relevant landslide information. Second, the edge features of neighbor points are constructed based on graph structure to extract and enhance point cloud features. Third, the attention mechanism assigns adaptive weights to edge features and aggregates them into new point features. Fourth, the graph structure, edge features, and attention weights are dynamically updated through the hierarchical structures, which enable an expanded receptive field. In the upper reach of the Jinsha River, point clouds were prepared for landslide segmentation. The controlled experiments were designed for effectiveness evaluation. The results reported that proposed DGA-Net achieved the highest mean Intersection over Union (mIoU) of 0.743 and F1-score of 0.786, which was over 6.7% and 3.6% mIoU higher than shallow machine learning and other deep learning models. Besides, we analyzed the effect of super parameters in sampling strategy and the segmentation threshold in prediction stage on the model performance. The results showed that the samples with suitable sampling diameters and appropriate neighboring points are beneficial for landslide segmentation, and using optimal thresholds to segment stacked multiple prediction values can improve mIoU by 6%. Furthermore, the visualized feature maps revealed that the proposed model can index landslide points in feature space, which is beneficial to construct graph structures and use attention to enhance features. Comparative studies on the above experiments proved the superiority of the proposed method for landslide segmentation. We hope that our method and research results can contribute to post-disaster relief efforts.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] PSR-GAT: Arbitrary point cloud super-resolution using graph attention networks
    Fan Zhong
    Zhengyao Bai
    Multimedia Tools and Applications, 2024, 83 : 26213 - 26232
  • [22] PSR-GAT: Arbitrary point cloud super-resolution using graph attention networks
    Zhong, Fan
    Bai, Zhengyao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 26213 - 26232
  • [23] A Graph-Voxel Joint Convolution Neural Network for ALS Point Cloud Segmentation
    Zhang, Jinming
    Hu, Xiangyun
    Dai, Hengming
    IEEE ACCESS, 2020, 8 : 139781 - 139791
  • [24] Performance of Graph Neural Networks for Point Cloud Applications
    Parikh, Dhruv
    Zhang, Bingyi
    Kannan, Rajgopal
    Prasanna, Viktor
    Busart, Carl
    2023 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE, HPEC, 2023,
  • [25] Dynamic clustering transformer network for point cloud segmentation
    Lu, Dening
    Zhou, Jun
    Gao, Kyle
    Du, Jing
    Xu, Linlin
    Li, Jonathan
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [26] A Novel Local-Global Graph Convolutional Method for Point Cloud Semantic Segmentation
    Du, Zijin
    Ye, Hailiang
    Cao, Feilong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 4798 - 4812
  • [27] PCRNet+: A Point Cloud Alignment Algorithm Introducing Dynamic Graph Convolutional Neural Networks
    Qi, Te
    Li, Yingchun
    Tian, Jing
    Chen, Hang
    ELECTRONICS, 2025, 14 (05):
  • [28] SGSLNet: stratified contextual graph pooling for point cloud segmentation with graph structural learning
    Zhao, Xu
    Wang, Xiaohong
    Cong, Bingge
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [29] Kernel Point Convolution LSTM Networks for Radar Point Cloud Segmentation
    Nobis, Felix
    Fent, Felix
    Betz, Johannes
    Lienkamp, Markus
    APPLIED SCIENCES-BASEL, 2021, 11 (06):
  • [30] Graph Cut Based Point-Cloud Segmentation for Polygonal Reconstruction
    Sedlacek, David
    Zara, Jiri
    ADVANCES IN VISUAL COMPUTING, PT 2, PROCEEDINGS, 2009, 5876 : 218 - 227