Predicting the synthesizability of crystalline inorganic materials from the data of known material compositions

被引:10
作者
Antoniuk, Evan R. [1 ,2 ]
Cheon, Gowoon [3 ,4 ]
Wang, George [5 ,6 ,7 ]
Bernstein, Daniel [8 ]
Cai, William [8 ]
Reed, Evan J. [8 ]
机构
[1] Lawrence Livermore Natl Lab, Mat Sci Div, Phys & Life Sci Directorate, Livermore, CA 94550 USA
[2] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA USA
[4] Google Res, Mountain View, CA USA
[5] Stanford Univ, Dept Phys, Stanford, CA USA
[6] Stanford Univ, Dept Math, Stanford, CA USA
[7] Stanford Univ, Dept Comp Sci, Stanford, CA USA
[8] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA USA
关键词
WISDOM;
D O I
10.1038/s41524-023-01114-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reliably identifying synthesizable inorganic crystalline materials is an unsolved challenge required for realizing autonomous materials discovery. In this work, we develop a deep learning synthesizability model (SynthNN) that leverages the entire space of synthesized inorganic chemical compositions. By reformulating material discovery as a synthesizability classification task, SynthNN identifies synthesizable materials with 7x higher precision than with DFT-calculated formation energies. In a head-to-head material discovery comparison against 20 expert material scientists, SynthNN outperforms all experts, achieves 1.5x higher precision and completes the task five orders of magnitude faster than the best human expert. Remarkably, without any prior chemical knowledge, our experiments indicate that SynthNN learns the chemical principles of charge-balancing, chemical family relationships and ionicity, and utilizes these principles to generate synthesizability predictions. The development of SynthNN will allow for synthesizability constraints to be seamlessly integrated into computational material screening workflows to increase their reliability for identifying synthetically accessible materials.
引用
收藏
页数:11
相关论文
共 54 条
[11]   COMPUTER-ASSISTED SYNTHETIC ANALYSIS FOR COMPLEX MOLECULES - METHODS AND PROCEDURES FOR MACHINE GENERATION OF SYNTHETIC INTERMEDIATES [J].
COREY, EJ ;
CRAMER, RD ;
HOWE, WJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1972, 94 (02) :440-&
[12]   Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data [J].
Cubuk, Ekin D. ;
Sendek, Austin D. ;
Reed, Evan J. .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (21)
[13]   Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials [J].
Dan, Yabo ;
Zhao, Yong ;
Li, Xiang ;
Li, Shaobo ;
Hu, Ming ;
Hu, Jianjun .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[14]   Predicting synthesizability of crystalline materials via deep learning [J].
Davariashtiyani, Ali ;
Kadkhodaie, Zahra ;
Kadkhodaei, Sara .
COMMUNICATIONS MATERIALS, 2021, 2 (01)
[15]   Materials discovery by chemical analogy: role of oxidation states in structure prediction [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Isayev, Olexandr ;
Walsh, Aron .
FARADAY DISCUSSIONS, 2018, 211 :553-568
[16]   Computational Screening of All Stoichiometric Inorganic Materials [J].
Davies, Daniel W. ;
Butler, Keith T. ;
Jackson, Adam J. ;
Morris, Andrew ;
Frost, Jarvist M. ;
Skelton, Jonathan M. ;
Walsh, Aron .
CHEM, 2016, 1 (04) :617-627
[17]  
Dunn A, 2020, NPJ COMPUT MATER, V6, DOI 10.1038/s41524-020-00406-3
[18]  
Elkan K., 2008, P 14 INT C KNOWL DIS, P213
[19]   Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning [J].
Frey, Nathan C. ;
Wang, Jin ;
Bellido, Gabriel Ivan Vega ;
Anasori, Babak ;
Gogotsi, Yury ;
Shenoy, Vivek B. .
ACS NANO, 2019, 13 (03) :3031-3041
[20]  
Frid-Adar M., 2018, ArXiv180102385 Cs