MacWilliams' Extension Theorem for rank-metric codes

被引:0
|
作者
Gorla, Elisa
Salizzoni, Flavio
机构
关键词
Rank-metric codes; Isometries; MacWilliams' Extension Theorem; WEIGHTS; PROOF; LEE;
D O I
10.1016/j.jsc.2023.102263
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The MacWilliams' Extension Theorem is a classical result by Florence Jessie MacWilliams. It shows that every linear isometry between linear block-codes endowed with the Hamming distance can be extended to a linear isometry of the ambient space. Such an extension fails to exist in general for rank-metric codes, that is, one can easily find examples of linear isometries between rank-metric codes which cannot be extended to linear isometries of the ambient space. In this paper, we explore to what extent a MacWilliams' Extension Theorem may hold for rank-metric codes. We provide an extensive list of examples of obstructions to the existence of an extension, as well as a positive result. (c) 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Divisible Linear Rank Metric Codes
    Polverino, Olga
    Santonastaso, Paolo
    Sheekey, John
    Zullo, Ferdinando
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4528 - 4536
  • [42] Bounds on Covering Codes with the Rank Metric
    Gadouleau, Maximilien
    Yan, Zhiyuan
    IEEE COMMUNICATIONS LETTERS, 2009, 13 (09) : 691 - 693
  • [43] Hermitian Rank Metric Codes and Duality
    La Cruz, Javier De
    Evilla, Jorge Robinson
    Ozbudak, Ferruh
    IEEE ACCESS, 2021, 9 : 38479 - 38487
  • [44] Extending Coggia-Couvreur attack on Loidreau's rank-metric cryptosystem
    Ghatak, Anirban
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (01) : 215 - 238
  • [45] Packing and covering properties of rank metric codes
    Gadouleau, Maximilien
    Yan, Zhiyuan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (09) : 3873 - 3883
  • [46] EQUIDISTANT RANK METRIC CODES: CONSTRUCTION AND PROPERTIES
    Selvaraj, R. S.
    Demamu, Jejaw
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2010, 10 (03) : 183 - 192
  • [47] A geometric approach to rank metric codes and a classification of constant weight codes
    Randrianarisoa, Tovohery Hajatiana
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (07) : 1331 - 1348
  • [48] A geometric approach to rank metric codes and a classification of constant weight codes
    Tovohery Hajatiana Randrianarisoa
    Designs, Codes and Cryptography, 2020, 88 : 1331 - 1348
  • [49] On List-Decodability of Random Rank Metric Codes and Subspace Codes
    Ding, Yang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (01) : 51 - 59
  • [50] MacWilliams extension theorems and the local-global property for codes over Frobenius rings
    Barra, Aleams
    Gluesing-Luerssen, Heide
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (04) : 703 - 728